Quantum Entropy Evolution
- URL: http://arxiv.org/abs/2106.15378v2
- Date: Sat, 14 May 2022 12:49:10 GMT
- Title: Quantum Entropy Evolution
- Authors: Davi Geiger and Zvi M. Kedem
- Abstract summary: A quantum coordinate-entropy formulated in quantum phase space has been recently proposed together with an entropy law.
We show that the entropy associated with coherent states evolving under a Dirac Hamiltonian is increasing.
We then analyze the impact of the entropy law for the evolution scenarios described above and explore the possibility that entropy oscillations trigger the annihilation and the creation of particles.
- Score: 0.12183405753834559
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A quantum coordinate-entropy formulated in quantum phase space has been
recently proposed together with an entropy law that asserts that such entropy
can not decrease over time. The coordinate-entropy is dimensionless, a
relativistic scalar, and it is invariant under coordinate and CPT
transformations. We study here the time evolution of this entropy.
We show that the entropy associated with coherent states evolving under a
Dirac Hamiltonian is increasing. However, for the collisions of two particles,
where each is evolving as a coherent state, as they come closer to each other
their spatial entanglement causes the total system's entropy to oscillate. We
augment time reversal with time translation and show that CPT with time
translation can transform particles with decreasing entropy for a finite time
interval into anti-particles with increasing entropy for the same finite time
interval.
We then analyze the impact of the entropy law for the evolution scenarios
described above and explore the possibility that entropy oscillations trigger
the annihilation and the creation of particles.
Related papers
- Entanglement entropy in conformal quantum mechanics [68.8204255655161]
We consider sets of states in conformal quantum mechanics associated to generators of time evolution whose orbits cover different regions of the time domain.
States labelled by a continuous global time variable define the two-point correlation functions of the theory seen as a one-dimensional conformal field theory.
arXiv Detail & Related papers (2023-06-21T14:21:23Z) - Multipartite Entanglement in the Measurement-Induced Phase Transition of
the Quantum Ising Chain [77.34726150561087]
External monitoring of quantum many-body systems can give rise to a measurement-induced phase transition.
We show that this transition extends beyond bipartite correlations to multipartite entanglement.
arXiv Detail & Related papers (2023-02-13T15:54:11Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Pseudo Entropy in dS/CFT and Time-like Entanglement Entropy [0.880802134366532]
We study holographic entanglement entropy in dS/CFT and introduce time-like entanglement entropy in CFTs.
Both of them take complex values in general and are related with each other via an analytical continuation.
We find that the imaginary part of pseudo entropy implies an emergence of time in dS/CFT.
arXiv Detail & Related papers (2022-10-17T22:12:19Z) - W entropy in hard-core system [5.156535834970047]
In quantum mechanics the evolution of quantum states is symmetrical about time-reversal, resulting in a contradiction between thermodynamic entropy and quantum entropy.
We study the W entropy, which is calculated from the probability distribution of the wave function on Wannier basis, in hard-core boson system.
arXiv Detail & Related papers (2022-10-01T03:24:10Z) - Subregion Spectrum Form Factor via Pseudo Entropy [0.0]
We consider a transition matrix between the thermofield double state and its time-evolved state in two-dimensional field theories.
We show that the real part of the pseudo entropy behaves similarly to the spectral form factor.
arXiv Detail & Related papers (2021-09-01T13:17:19Z) - Quantum Entropy [0.12183405753834559]
We propose a quantum entropy that quantify the randomness of a pure quantum state via a conjugate pair of observables forming the quantum phase space.
We conjecture an entropy law whereby that entropy of a closed system never decreases, implying a time arrow for particles physics.
arXiv Detail & Related papers (2021-06-29T13:04:55Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - Quantum Kolmogorov-Sinai entropy and Pesin relation [0.0]
A quantum Kolmogorov-Sinai entropy is defined as the entropy production per unit time resulting from coupling the system to a weak, auxiliary bath.
We show a quantum (Pesin) relation between this entropy and the sum of positive eigenvalues of a matrix describing phase-space expansion.
arXiv Detail & Related papers (2020-10-12T23:08:35Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Entropy production in the quantum walk [62.997667081978825]
We focus on the study of the discrete-time quantum walk on the line, from the entropy production perspective.
We argue that the evolution of the coin can be modeled as an open two-level system that exchanges energy with the lattice at some effective temperature.
arXiv Detail & Related papers (2020-04-09T23:18:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.