Pseudo Entropy in dS/CFT and Time-like Entanglement Entropy
- URL: http://arxiv.org/abs/2210.09457v2
- Date: Wed, 2 Nov 2022 23:44:28 GMT
- Title: Pseudo Entropy in dS/CFT and Time-like Entanglement Entropy
- Authors: Kazuki Doi, Jonathan Harper, Ali Mollabashi, Tadashi Takayanagi, and
Yusuke Taki
- Abstract summary: We study holographic entanglement entropy in dS/CFT and introduce time-like entanglement entropy in CFTs.
Both of them take complex values in general and are related with each other via an analytical continuation.
We find that the imaginary part of pseudo entropy implies an emergence of time in dS/CFT.
- Score: 0.880802134366532
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We study holographic entanglement entropy in dS/CFT and introduce time-like
entanglement entropy in CFTs. Both of them take complex values in general and
are related with each other via an analytical continuation. We argue that they
are correctly understood as pseudo entropy. We find that the imaginary part of
pseudo entropy implies an emergence of time in dS/CFT.
Related papers
- Timelike entanglement entropy [0.880802134366532]
We define a new complex-valued measure of information called the timelike entanglement entropy (EE)
For holographic systems we define the timelike EE as the total valued area of a particular stationary combination of both space and timelike surfaces.
arXiv Detail & Related papers (2023-02-22T23:16:41Z) - W entropy in hard-core system [5.156535834970047]
In quantum mechanics the evolution of quantum states is symmetrical about time-reversal, resulting in a contradiction between thermodynamic entropy and quantum entropy.
We study the W entropy, which is calculated from the probability distribution of the wave function on Wannier basis, in hard-core boson system.
arXiv Detail & Related papers (2022-10-01T03:24:10Z) - Constructible reality condition of pseudo entropy via pseudo-Hermiticity [17.29263775089729]
We find the general form of the transition matrix for which the eigenvalues of the reduced transition matrix possess real or complex pairs of eigenvalues.
We show the reality condition for pseudo entropy is related to the Tomita-Takesaki modular theory for quantum field theory.
arXiv Detail & Related papers (2022-09-15T14:08:53Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Subregion Spectrum Form Factor via Pseudo Entropy [0.0]
We consider a transition matrix between the thermofield double state and its time-evolved state in two-dimensional field theories.
We show that the real part of the pseudo entropy behaves similarly to the spectral form factor.
arXiv Detail & Related papers (2021-09-01T13:17:19Z) - Quantum Entropy Evolution [0.12183405753834559]
A quantum coordinate-entropy formulated in quantum phase space has been recently proposed together with an entropy law.
We show that the entropy associated with coherent states evolving under a Dirac Hamiltonian is increasing.
We then analyze the impact of the entropy law for the evolution scenarios described above and explore the possibility that entropy oscillations trigger the annihilation and the creation of particles.
arXiv Detail & Related papers (2021-06-29T13:07:09Z) - Aspects of Pseudo Entropy in Field Theories [0.0]
We numerically analyze a class of free scalar field theories and the XY spin model.
This reveals the basic properties of pseudo entropy in many-body systems.
We find that the non-positivity of the difference can be violated only if the initial and final states belong to different quantum phases.
arXiv Detail & Related papers (2021-06-06T13:25:35Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - Improved thermal area law and quasi-linear time algorithm for quantum
Gibbs states [14.567067583556714]
We propose a new thermal area law that holds for generic many-body systems on lattices.
We improve the temperature dependence from the original $mathcalO(beta)$ to $tildemathcalO(beta2/3)$.
We also prove analogous bounds for the R'enyi entanglement of purification and the entanglement of formation.
arXiv Detail & Related papers (2020-07-22T02:55:27Z) - Entropy and relative entropy from information-theoretic principles [24.74754293747645]
We find that every relative entropy must lie between the R'enyi divergences of order $0$ and $infty$.
Our main result is a one-to-one correspondence between entropies and relative entropies.
arXiv Detail & Related papers (2020-06-19T14:50:44Z) - Entropy production in the quantum walk [62.997667081978825]
We focus on the study of the discrete-time quantum walk on the line, from the entropy production perspective.
We argue that the evolution of the coin can be modeled as an open two-level system that exchanges energy with the lattice at some effective temperature.
arXiv Detail & Related papers (2020-04-09T23:18:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.