Recent Advances in Fibrosis and Scar Segmentation from Cardiac MRI: A
State-of-the-Art Review and Future Perspectives
- URL: http://arxiv.org/abs/2106.15707v1
- Date: Mon, 28 Jun 2021 11:30:35 GMT
- Title: Recent Advances in Fibrosis and Scar Segmentation from Cardiac MRI: A
State-of-the-Art Review and Future Perspectives
- Authors: Yinzhe Wu, Zeyu Tang, Binghuan Li, David Firmin, Guang Yang
- Abstract summary: Late Gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) has been successful for its efficacy in guiding the clinical diagnosis and treatment reliably.
This paper conducts a state-of-the-art review of conventional and current state-of-the-art approaches utilising different modalities for accurate cardiac fibrosis and scar segmentation.
- Score: 1.8268300764373178
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Segmentation of cardiac fibrosis and scar are essential for clinical
diagnosis and can provide invaluable guidance for the treatment of cardiac
diseases. Late Gadolinium enhancement (LGE) cardiovascular magnetic resonance
(CMR) has been successful for its efficacy in guiding the clinical diagnosis
and treatment reliably. For LGE CMR, many methods have demonstrated success in
accurately segmenting scarring regions. Co-registration with other
non-contrast-agent (non-CA) modalities, balanced steady-state free precession
(bSSFP) and cine magnetic resonance imaging (MRI) for example, can further
enhance the efficacy of automated segmentation of cardiac anatomies. Many
conventional methods have been proposed to provide automated or semi-automated
segmentation of scars. With the development of deep learning in recent years,
we can also see more advanced methods that are more efficient in providing more
accurate segmentations. This paper conducts a state-of-the-art review of
conventional and current state-of-the-art approaches utilising different
modalities for accurate cardiac fibrosis and scar segmentation.
Related papers
- Advanced Neural Network Architecture for Enhanced Multi-Lead ECG Arrhythmia Detection through Optimized Feature Extraction [0.0]
Arrhythmia, characterized by irregular heart rhythms, presents formidable diagnostic challenges.
This study introduces an innovative approach utilizing deep learning techniques to address the complexities of arrhythmia classification.
arXiv Detail & Related papers (2024-04-13T19:56:15Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Joint Deep Learning for Improved Myocardial Scar Detection from Cardiac
MRI [7.906794859364607]
This paper presents a novel joint deep learning (JDL) framework that improves such tasks by utilizing simultaneously learned myocardium segmentations.
Our proposed method introduces a message passing module where the information of myocardium segmentation is directly passed to guide scar detectors.
We demonstrate the effectiveness of JDL on LGE-CMR images for automated left ventricular (LV) scar detection, with great potential to improve risk prediction.
arXiv Detail & Related papers (2022-11-11T14:41:35Z) - AWSnet: An Auto-weighted Supervision Attention Network for Myocardial
Scar and Edema Segmentation in Multi-sequence Cardiac Magnetic Resonance
Images [23.212429566838203]
We develop a novel auto-weighted supervision framework to tackle the scar and edema segmentation from multi-sequence CMR data.
We also design a coarse-to-fine framework to boost the small myocardial pathology region segmentation with shape prior knowledge.
Our method is promising in advancing the myocardial pathology assessment on multi-sequence CMR data.
arXiv Detail & Related papers (2022-01-14T08:59:54Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS)
MyoPS combines three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020.
The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation.
arXiv Detail & Related papers (2022-01-10T06:37:23Z) - Multi-Modality Cardiac Image Analysis with Deep Learning [16.814634972950717]
Late gadolinium enhancement magnetic resonance imaging (LGE MRI) is a promising technique to visualize and quantify myocardial infarction (MI) and atrial scars.
This chapter aims to summarize the state-of-the-art and our recent advanced contributions on deep learning based multi-modality cardiac image analysis.
arXiv Detail & Related papers (2021-11-08T12:54:11Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - Anatomically-Informed Deep Learning on Contrast-Enhanced Cardiac MRI for
Scar Segmentation and Clinical Feature Extraction [6.386874708851962]
Visualizing disease-induced scarring and fibrosis in the heart on cardiac magnetic resonance (CMR) imaging with contrast enhancement (LGE) is paramount in characterizing disease progression and quantifying pathophysiological substrates of arrhythmias.
Here, we present a novel fully-automated deep learning solution for left ventricle (LV) and scar/fibrosis segmentation and clinical feature extraction from LGE-CMR.
The technology involves three cascading convolutional neural networks that segment myocardium and scar/fibrosis from raw LGE-CMR images and constrain these segmentations within anatomical guidelines.
arXiv Detail & Related papers (2020-10-21T15:43:08Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - Detecting Pancreatic Ductal Adenocarcinoma in Multi-phase CT Scans via
Alignment Ensemble [77.5625174267105]
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers among the population.
Multiple phases provide more information than single phase, but they are unaligned and inhomogeneous in texture.
We suggest an ensemble of all these alignments as a promising way to boost the performance of PDAC detection.
arXiv Detail & Related papers (2020-03-18T19:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.