Curvature Graph Neural Network
- URL: http://arxiv.org/abs/2106.15762v1
- Date: Wed, 30 Jun 2021 00:56:03 GMT
- Title: Curvature Graph Neural Network
- Authors: Haifeng Li, Jun Cao, Jiawei Zhu, Yu Liu, Qing Zhu, Guohua Wu
- Abstract summary: We introduce discrete graph curvature (the Ricci curvature) to quantify the strength of structural connection of pairwise nodes.
We propose Curvature Graph Neural Network (CGNN), which effectively improves the adaptive locality ability of GNNs.
The experimental results on synthetic datasets show that CGNN effectively exploits the topology structure information.
- Score: 8.477559786537919
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graph neural networks (GNNs) have achieved great success in many graph-based
tasks. Much work is dedicated to empowering GNNs with the adaptive locality
ability, which enables measuring the importance of neighboring nodes to the
target node by a node-specific mechanism. However, the current node-specific
mechanisms are deficient in distinguishing the importance of nodes in the
topology structure. We believe that the structural importance of neighboring
nodes is closely related to their importance in aggregation. In this paper, we
introduce discrete graph curvature (the Ricci curvature) to quantify the
strength of structural connection of pairwise nodes. And we propose Curvature
Graph Neural Network (CGNN), which effectively improves the adaptive locality
ability of GNNs by leveraging the structural property of graph curvature. To
improve the adaptability of curvature to various datasets, we explicitly
transform curvature into the weights of neighboring nodes by the necessary
Negative Curvature Processing Module and Curvature Normalization Module. Then,
we conduct numerous experiments on various synthetic datasets and real-world
datasets. The experimental results on synthetic datasets show that CGNN
effectively exploits the topology structure information, and the performance is
improved significantly. CGNN outperforms the baselines on 5 dense node
classification benchmark datasets. This study deepens the understanding of how
to utilize advanced topology information and assign the importance of
neighboring nodes from the perspective of graph curvature and encourages us to
bridge the gap between graph theory and neural networks.
Related papers
- DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - GraphRARE: Reinforcement Learning Enhanced Graph Neural Network with Relative Entropy [21.553180564868306]
GraphRARE is a framework built upon node relative entropy and deep reinforcement learning.
An innovative node relative entropy is used to measure mutual information between node pairs.
A deep reinforcement learning-based algorithm is developed to optimize the graph topology.
arXiv Detail & Related papers (2023-12-15T11:30:18Z) - How Curvature Enhance the Adaptation Power of Framelet GCNs [27.831929635701886]
Graph neural network (GNN) has been demonstrated powerful in modeling graph-structured data.
This paper introduces a new approach to enhance GNN by discrete graph Ricci curvature.
We show that our curvature-based GNN model outperforms the state-of-the-art baselines in both homophily and heterophily graph datasets.
arXiv Detail & Related papers (2023-07-19T06:05:33Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - Overcoming Oversmoothness in Graph Convolutional Networks via Hybrid
Scattering Networks [11.857894213975644]
We propose a hybrid graph neural network (GNN) framework that combines traditional GCN filters with band-pass filters defined via the geometric scattering transform.
Our theoretical results establish the complementary benefits of the scattering filters to leverage structural information from the graph, while our experiments show the benefits of our method on various learning tasks.
arXiv Detail & Related papers (2022-01-22T00:47:41Z) - Structure Enhanced Graph Neural Networks for Link Prediction [6.872826041648584]
We propose Structure Enhanced Graph neural network (SEG) for link prediction.
SEG incorporates surrounding topological information of target nodes into an ordinary GNN model.
Experiments on the OGB link prediction datasets demonstrate that SEG achieves state-of-the-art results.
arXiv Detail & Related papers (2022-01-14T03:49:30Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
We propose an Adaptive Curvature Exploration Hyperbolic Graph NeuralNetwork named ACE-HGNN to adaptively learn the optimal curvature according to the input graph and downstream tasks.
Experiments on multiple real-world graph datasets demonstrate a significant and consistent performance improvement in model quality with competitive performance and good generalization ability.
arXiv Detail & Related papers (2021-10-15T07:18:57Z) - Node Similarity Preserving Graph Convolutional Networks [51.520749924844054]
Graph Neural Networks (GNNs) explore the graph structure and node features by aggregating and transforming information within node neighborhoods.
We propose SimP-GCN that can effectively and efficiently preserve node similarity while exploiting graph structure.
We validate the effectiveness of SimP-GCN on seven benchmark datasets including three assortative and four disassorative graphs.
arXiv Detail & Related papers (2020-11-19T04:18:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.