Quantum concentration inequalities
- URL: http://arxiv.org/abs/2106.15819v2
- Date: Tue, 3 May 2022 10:04:29 GMT
- Title: Quantum concentration inequalities
- Authors: Giacomo De Palma and Cambyse Rouz\'e
- Abstract summary: We establish transportation cost inequalities (TCI) with respect to the quantum Wasserstein distance.
We prove Gibbs states of commuting Hamiltonians on arbitrary hypergraphs $H=(V,E)$ satisfy a TCI with constant scaling as $O(|V|)$.
We argue that the temperature range for which the TCI holds can be enlarged by relating it to recently established modified logarithmic Sobolev inequalities.
- Score: 12.56413718364189
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We establish transportation cost inequalities (TCI) with respect to the
quantum Wasserstein distance by introducing quantum extensions of well-known
classical methods: first, using a non-commutative version of Ollivier's coarse
Ricci curvature, we prove that high temperature Gibbs states of commuting
Hamiltonians on arbitrary hypergraphs $H=(V,E)$ satisfy a TCI with constant
scaling as $O(|V|)$. Second, we argue that the temperature range for which the
TCI holds can be enlarged by relating it to recently established modified
logarithmic Sobolev inequalities. Third, we prove that the inequality still
holds for fixed points of arbitrary reversible local quantum Markov semigroups
on regular lattices, albeit with slightly worsened constants, under a seemingly
weaker condition of local indistinguishability of the fixed points. Finally, we
use our framework to prove Gaussian concentration bounds for the distribution
of eigenvalues of quasi-local observables and argue the usefulness of the TCI
in proving the equivalence of the canonical and microcanonical ensembles and an
exponential improvement over the weak Eigenstate Thermalization Hypothesis.
Related papers
- Quantum concentration inequalities and equivalence of the thermodynamical ensembles: an optimal mass transport approach [4.604003661048267]
We prove new concentration inequalities for quantum spin systems.
Our results do not require the spins to be arranged in a regular lattice.
We introduce a local W1 distance, which quantifies the distinguishability of two states with respect to local observables.
arXiv Detail & Related papers (2024-03-27T14:32:03Z) - Conditional Independence of 1D Gibbs States with Applications to Efficient Learning [0.23301643766310368]
We show that spin chains in thermal equilibrium have a correlation structure in which individual regions are strongly correlated at most with their near vicinity.
We prove that these measures decay superexponentially at every positive temperature.
arXiv Detail & Related papers (2024-02-28T17:28:01Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Relative entropy decay and complete positivity mixing time [11.225649178057697]
We prove that the complete modified logarithmic Sobolev constant of a quantum Markov semigroup is bounded by the inverse of its complete positivity mixing time.
Our results apply to GNS-symmetric semigroups on general von Neumanns.
arXiv Detail & Related papers (2022-09-22T17:40:22Z) - Role of boundary conditions in the full counting statistics of
topological defects after crossing a continuous phase transition [62.997667081978825]
We analyze the role of boundary conditions in the statistics of topological defects.
We show that for fast and moderate quenches, the cumulants of the kink number distribution present a universal scaling with the quench rate.
arXiv Detail & Related papers (2022-07-08T09:55:05Z) - Manipulating Generalized Dirac Cones In Quantum Metasurfaces [68.8204255655161]
We consider a collection of single quantum emitters arranged in a honeycomb lattice with subwavelength periodicity.
We show that introducing uniaxial anisotropy in the lattice results in modified dispersion relations.
arXiv Detail & Related papers (2022-03-21T17:59:58Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Quasi-Locality Bounds for Quantum Lattice Systems. Part II.
Perturbations of Frustration-Free Spin Models with Gapped Ground States [0.0]
We study the stability with respect to a broad class of perturbations of gapped ground state phases of quantum spin systems.
Under a condition of Local Topological Quantum Order, the bulk gap is stable under perturbations that decay at long distances faster than a stretched exponential.
arXiv Detail & Related papers (2020-10-29T03:24:19Z) - The modified logarithmic Sobolev inequality for quantum spin systems:
classical and commuting nearest neighbour interactions [2.148535041822524]
We prove a strong exponential convergence in relative entropy of the system to equilibrium under a condition of spatial mixing.
We show that our notion of spatial mixing is a consequence of the recent quantum generalization of Dobrushin and Shlosman's complete analyticity of the free-energy at equilibrium.
Our results have wide-ranging applications in quantum information.
arXiv Detail & Related papers (2020-09-24T16:54:06Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.