Quantum Gibbs states are locally Markovian
- URL: http://arxiv.org/abs/2504.02208v1
- Date: Thu, 03 Apr 2025 01:54:42 GMT
- Title: Quantum Gibbs states are locally Markovian
- Authors: Chi-Fang Chen, Cambyse Rouzé,
- Abstract summary: We show that for any Hamiltonian with a bounded interaction degree, the quantum Gibbs state is locally Markov at arbitrary temperature.<n>We introduce a regularization scheme for imaginary-time-evolved operators at arbitrarily low temperatures.
- Score: 1.9643748953805944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Markov property entails the conditional independence structure inherent in Gibbs distributions for general classical Hamiltonians, a feature that plays a crucial role in inference, mixing time analysis, and algorithm design. However, much less is known about quantum Gibbs states. In this work, we show that for any Hamiltonian with a bounded interaction degree, the quantum Gibbs state is locally Markov at arbitrary temperature, meaning there exists a quasi-local recovery map for every local region. Notably, this recovery map is obtained by applying a detailed-balanced Lindbladian with jumps acting on the region. Consequently, we prove that (i) the conditional mutual information (CMI) for a shielded small region decays exponentially with the shielding distance, and (ii) under the assumption of uniform clustering of correlations, Gibbs states of general non-commuting Hamiltonians on $D$-dimensional lattices can be prepared by a quantum circuit of depth $e^{O(\log^D(n/\epsilon))}$, which can be further reduced assuming certain local gap condition. Our proofs introduce a regularization scheme for imaginary-time-evolved operators at arbitrarily low temperatures and reveal a connection between the Dirichlet form, a dynamic quantity, and the commutator in the KMS inner product, a static quantity. We believe these tools pave the way for tackling further challenges in quantum thermodynamics and mixing times, particularly in low-temperature regimes.
Related papers
- Polynomial Time Quantum Gibbs Sampling for Fermi-Hubbard Model at any Temperature [9.62464358196899]
We prove a constant gap of the perturbed Lindbladian corresponding to interacting fermions up to some maximal coupling strength.<n>This is achieved by using theorems about stability of the gap for lattice fermions.<n>As an application, we explain how to calculate partition functions for the considered systems.
arXiv Detail & Related papers (2025-01-02T18:56:02Z) - Bottlenecks in quantum channels and finite temperature phases of matter [5.776829342748993]
We prove an analogue of the "bottleneck theorem", well-known for classical Markov chains, for Markovian quantum channels.<n>For low-temperature quantum many-body systems, we use the bottleneck theorem to bound the performance of any quasi-local Gibbs sampler.
arXiv Detail & Related papers (2024-12-12T18:58:47Z) - Quasi-optimal sampling from Gibbs states via non-commutative optimal transport metrics [1.5999407512883517]
We study the problem of sampling from and preparing quantum Gibbs states of local commuting Hamiltonians on hypercubic lattices of arbitrary dimension.<n>We prove that any such Gibbs state which satisfies a clustering condition that we coin decay of matrix-valued quantum conditional mutual information can be quasi-optimally prepared on a quantum computer.
arXiv Detail & Related papers (2024-12-02T17:25:24Z) - Local quantum channels giving rise to quasi-local Gibbs states [0.0]
We study the steady-state properties of quantum channels with local Kraus operators.
A repeated application of these channels can be seen as a simple model for the thermalization process of a many-body system.
arXiv Detail & Related papers (2024-08-16T11:30:29Z) - A New Framework for Quantum Phases in Open Systems: Steady State of Imaginary-Time Lindbladian Evolution [18.47824812164327]
We introduce the concept of imaginary-time Lindbladian evolution as an alternative framework.
This new approach defines gapped quantum phases in open systems through the spectrum properties of the imaginary-Liouville superoperator.
arXiv Detail & Related papers (2024-08-06T14:53:40Z) - Scattering Neutrinos, Spin Models, and Permutations [42.642008092347986]
We consider a class of Heisenberg all-to-all coupled spin models inspired by neutrino interactions in a supernova with $N$ degrees of freedom.
These models are characterized by a coupling matrix that is relatively simple in the sense that there are only a few, relative to $N$, non-trivial eigenvalues.
arXiv Detail & Related papers (2024-06-26T18:27:15Z) - Strong decay of correlations for Gibbs states in any dimension [0.0]
Quantum systems in thermal equilibrium are described using Gibbs states.
We show that if the Gibbs state of a quantum system satisfies that each of its marginals admits a local effective Hamiltonian, then it satisfies a mixing condition.
arXiv Detail & Related papers (2024-01-18T17:20:29Z) - Locally purified density operators for noisy quantum circuits [17.38734393793605]
We map an LPDO of $N$ qubits to a pure state of size $2times N$ defined on a ladder and introduce a unified method for managing virtual and Kraus bonds.
We simulate numerically noisy random quantum circuits with depths up to $d=40$ using fidelity and entanglement entropy as accuracy measures.
arXiv Detail & Related papers (2023-12-05T16:10:30Z) - An efficient and exact noncommutative quantum Gibbs sampler [0.0]
We construct the first efficiently implementable and exactly detailed-balanced Lindbladian for Gibbs states of arbitrary noncommutative Hamiltonians.
Our construction can also be regarded as a continuous-time quantum analog of the Metropolis-Hastings algorithm.
arXiv Detail & Related papers (2023-11-15T18:51:24Z) - Overlapping qubits from non-isometric maps and de Sitter tensor networks [41.94295877935867]
We show that processes in local effective theories can be spoofed with a quantum system with fewer degrees of freedom.
We highlight how approximate overlapping qubits are conceptually connected to Hilbert space dimension verification, degree-of-freedom counting in black holes and holography.
arXiv Detail & Related papers (2023-04-05T18:08:30Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Many-body Hilbert space scarring on a superconducting processor [19.205729719781548]
Quantum many-body scarring (QMBS) is a recently discovered form of weak ergodicity breaking in strongly-interacting quantum systems.
Here, we experimentally realize a distinct kind of QMBS phenomena by approximately decoupling a part of the many-body Hilbert space in the computational basis.
Our experimental findings broaden the realm of QMBS mechanisms and pave the way to exploiting correlations in QMBS states for applications in quantum information technology.
arXiv Detail & Related papers (2022-01-10T16:33:38Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.