論文の概要: Explanation-Guided Diagnosis of Machine Learning Evasion Attacks
- arxiv url: http://arxiv.org/abs/2106.15820v1
- Date: Wed, 30 Jun 2021 05:47:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-01 15:19:56.737976
- Title: Explanation-Guided Diagnosis of Machine Learning Evasion Attacks
- Title(参考訳): 機械学習の侵入攻撃の説明誘導診断
- Authors: Abderrahmen Amich, Birhanu Eshete
- Abstract要約: 本稿では,ML回避攻撃の高忠実度評価を導くために,説明可能なML手法を利用する新しいフレームワークを提案する。
本フレームワークは,事前回避摂動と回避後説明の間の説明誘導相関解析を可能にする。
- 参考スコア(独自算出の注目度): 3.822543555265593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine Learning (ML) models are susceptible to evasion attacks. Evasion
accuracy is typically assessed using aggregate evasion rate, and it is an open
question whether aggregate evasion rate enables feature-level diagnosis on the
effect of adversarial perturbations on evasive predictions. In this paper, we
introduce a novel framework that harnesses explainable ML methods to guide
high-fidelity assessment of ML evasion attacks. Our framework enables
explanation-guided correlation analysis between pre-evasion perturbations and
post-evasion explanations. Towards systematic assessment of ML evasion attacks,
we propose and evaluate a novel suite of model-agnostic metrics for
sample-level and dataset-level correlation analysis. Using malware and image
classifiers, we conduct comprehensive evaluations across diverse model
architectures and complementary feature representations. Our explanation-guided
correlation analysis reveals correlation gaps between adversarial samples and
the corresponding perturbations performed on them. Using a case study on
explanation-guided evasion, we show the broader usage of our methodology for
assessing robustness of ML models.
- Abstract(参考訳): 機械学習(ML)モデルは、回避攻撃の影響を受けやすい。
侵入精度は, 集合的回避率を用いて評価されるのが一般的であり, 対向的摂動が回避予測に及ぼす影響について, 集合的回避率によって特徴レベルの診断が可能かどうかが疑問視される。
本稿では,ML回避攻撃の高忠実度評価を導くために,説明可能なML手法を利用する新しいフレームワークを提案する。
本フレームワークは,事前回避摂動と回避後説明の相関解析を可能にする。
ml回避攻撃の体系的評価に向けて,サンプルレベルおよびデータセットレベルの相関分析のためのモデル非依存メトリクススイートを提案し,評価する。
マルウェアと画像分類器を用いて,多様なモデルアーキテクチャと補完的特徴表現を包括的に評価する。
説明誘導相関解析により, 対向サンプルと対応する摂動の相関関係が明らかとなった。
説明誘導回避のケーススタディを用いて,MLモデルのロバスト性を評価するための方法論の幅広い利用方法を示す。
関連論文リスト
- Indiscriminate Disruption of Conditional Inference on Multivariate Gaussians [60.22542847840578]
敵対的機械学習の進歩にもかかわらず、敵対者の存在下でのガウスモデルに対する推論は特に過小評価されている。
我々は,意思決定者の条件推論とその後の行動の妨害を希望する自己関心のある攻撃者について,一組の明らかな変数を乱すことで検討する。
検出を避けるため、攻撃者は、破損した証拠の密度によって可否が決定される場合に、攻撃が可否を示すことを望んでいる。
論文 参考訳(メタデータ) (2024-11-21T17:46:55Z) - Empirical Perturbation Analysis of Linear System Solvers from a Data Poisoning Perspective [16.569765598914152]
本稿では,入力データの誤りが,敵攻撃に共通する摂動下での線形システム解法による解の適合誤差と精度に与える影響について検討する。
我々は2つの異なる知識レベルによるデータ摂動を提案し、毒素最適化を開発し、ラベル誘導摂動(LP)と無条件摂動(UP)という2つの摂動方法を研究する。
データ中毒の場合のように、データが意図的に摂動している状況下では、異なる種類の解法がこれらの摂動にどのように反応するかを理解し、異なる種類の敵攻撃によって最も影響を受けるアルゴリズムを特定する。
論文 参考訳(メタデータ) (2024-10-01T17:14:05Z) - Exploiting the Data Gap: Utilizing Non-ignorable Missingness to Manipulate Model Learning [13.797822374912773]
敵対的ミススティングネス(AM)攻撃は、悪意ある無知の欠陥メカニズムによって動機づけられる。
本研究は,AM攻撃の文脈における連帯学習に焦点を当てる。
両レベルの最適化として,対向的欠落メカニズムの学習を定式化する。
論文 参考訳(メタデータ) (2024-09-06T17:10:28Z) - Revisiting Spurious Correlation in Domain Generalization [12.745076668687748]
データ生成プロセスにおける因果関係を記述するために,構造因果モデル(SCM)を構築した。
さらに、スプリアス相関に基づくメカニズムを徹底的に分析する。
そこで本研究では,OOD一般化における共起バイアスの制御について,相対性スコア重み付き推定器を導入して提案する。
論文 参考訳(メタデータ) (2024-06-17T13:22:00Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
本稿では, 正当性検証のレンズを用いて, 逆入力の特性を包括的に解析する。
このような摂動に対する感受性に基づいてモデルを分類するために、新しい計量である逆数率(Adversarial Rate)を導入する。
本分析は, 直交入力が所定のDRLシステムの安全性にどのように影響するかを実証的に示す。
論文 参考訳(メタデータ) (2024-02-07T21:58:40Z) - Impact of Dataset Properties on Membership Inference Vulnerability of Deep Transfer Learning [8.808963973962278]
クラスごとの例やクラスの数など、プライバシの脆弱性とデータセットプロパティの関係を分析します。
シャドーモデルから算出したスコア分布と統計量から,MIA単位の脆弱性を導出する。
論文 参考訳(メタデータ) (2024-02-07T14:23:01Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
因果構造学習への現在のアプローチは、既知の介入目標を扱うか、仮説テストを使用して未知の介入目標を発見する。
本稿では、全ての介入対象を一貫して識別するスケーラブルで効率的なアルゴリズムを提案する。
提案アルゴリズムは、与えられた観測マルコフ同値クラスを介入マルコフ同値クラスに更新することも可能である。
論文 参考訳(メタデータ) (2021-11-15T03:16:56Z) - Balancing detectability and performance of attacks on the control
channel of Markov Decision Processes [77.66954176188426]
マルコフ決定過程(MDPs)の制御チャネルにおける最適ステルス毒素攻撃の設計問題について検討する。
この研究は、MDPに適用された敵国・毒殺攻撃や強化学習(RL)手法に対する研究コミュニティの最近の関心に動機づけられている。
論文 参考訳(メタデータ) (2021-09-15T09:13:10Z) - EG-Booster: Explanation-Guided Booster of ML Evasion Attacks [3.822543555265593]
本稿では,説明可能なMLの手法を活用して,敵対的事例作成をガイドするEG-Boosterという新しい手法を提案する。
EG-Boosterはアーキテクチャや脅威モデルをモデル化しておらず、以前文献で使われていた様々な距離メトリクスをサポートする。
以上の結果から,EG-Boosterは回避率を著しく向上し,摂動回数の減少が示唆された。
論文 参考訳(メタデータ) (2021-08-31T15:36:16Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
機械学習(ML)モデルに対する推論攻撃により、敵はトレーニングデータやモデルパラメータなどを学ぶことができる。
私たちは、メンバシップ推論、モデル反転、属性推論、モデル盗難の4つの攻撃に集中しています。
私たちの分析では、MLモデルオーナがモデルをデプロイするリスクを評価することができる、モジュール化された再使用可能なソフトウェアであるML-Doctorに依存しています。
論文 参考訳(メタデータ) (2021-02-04T11:35:13Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBAは、確率論的モデリング、情報理論、統計学といった側面を組み合わせた安全な強化学習のためのフレームワークである。
我々は,低次元および高次元の状態表現を含む安全な力学系ベンチマークを用いて,アルゴリズムの評価を行った。
アクティブなメトリクスと安全性の制約を詳細に分析することで,フレームワークの有効性を直感的に評価する。
論文 参考訳(メタデータ) (2020-06-12T10:40:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。