Symmetry-resolved entanglement entropy in Wess-Zumino-Witten models
- URL: http://arxiv.org/abs/2106.15946v2
- Date: Fri, 15 Oct 2021 12:13:36 GMT
- Title: Symmetry-resolved entanglement entropy in Wess-Zumino-Witten models
- Authors: Pasquale Calabrese, J\'er\^ome Dubail and Sara Murciano
- Abstract summary: We first consider $SU(2)_k$ as a case study and then generalise to an arbitrary non-abelian Lie group.
A $loglog L$ contribution to the R'enyi entropies exhibits a universal form related to the underlying symmetry group of the model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of the decomposition of the R\'enyi entanglement
entropies in theories with a non-abelian symmetry by doing a thorough analysis
of Wess-Zumino-Witten (WZW) models. We first consider $SU(2)_k$ as a case study
and then generalise to an arbitrary non-abelian Lie group. We find that at
leading order in the subsystem size $L$ the entanglement is equally distributed
among the different sectors labelled by the irreducible representation of the
associated algebra. We also identify the leading term that breaks this
equipartition: it does not depend on $L$ but only on the dimension of the
representation. Moreover, a $\log\log L$ contribution to the R\'enyi entropies
exhibits a universal form related to the underlying symmetry group of the
model, i.e. the dimension of the Lie group.
Related papers
- (SPT-)LSM theorems from projective non-invertible symmetries [0.0]
Projective symmetries are ubiquitous in quantum lattice models and can be leveraged to constrain their phase diagram and entanglement structure.
In this paper, we investigate the consequences of projective algebras formed by non-invertible symmetries and lattice translations.
The projectivity also affects the dual symmetries after gauging $mathsfRep(G)times Z(G)$ sub-symmetries.
arXiv Detail & Related papers (2024-09-26T17:54:21Z) - Entanglement asymmetry in the critical XXZ spin chain [0.0]
We study the explicit breaking of a $SU(2)$ symmetry to a $U(1)$ subgroup employing the entanglement asymmetry.
We consider as specific model the critical XXZ spin chain, which breaks the $SU(2)$ symmetry of spin rotations except at the isotropic point.
arXiv Detail & Related papers (2024-07-08T22:16:22Z) - Non-abelian symmetry-resolved entanglement entropy [1.433758865948252]
We introduce a framework for symmetry-resolved entanglement entropy with a non-abelian symmetry group.
We derive exact formulas for the average and the variance of the typical entanglement entropy for an ensemble of random pure states with fixed non-abelian charges.
We show that, compared to the abelian case, new phenomena arise from the interplay of locality and non-abelian symmetry.
arXiv Detail & Related papers (2024-05-01T16:06:48Z) - Computational-Statistical Gaps in Gaussian Single-Index Models [77.1473134227844]
Single-Index Models are high-dimensional regression problems with planted structure.
We show that computationally efficient algorithms, both within the Statistical Query (SQ) and the Low-Degree Polynomial (LDP) framework, necessarily require $Omega(dkstar/2)$ samples.
arXiv Detail & Related papers (2024-03-08T18:50:19Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
We design a deep-learning algorithm for the discovery and identification of the continuous group of symmetries present in a labeled dataset.
We use fully connected neural networks to model the transformations symmetry and the corresponding generators.
Our study also opens the door for using a machine learning approach in the mathematical study of Lie groups and their properties.
arXiv Detail & Related papers (2023-01-13T16:25:25Z) - Towards Antisymmetric Neural Ansatz Separation [48.80300074254758]
We study separations between two fundamental models of antisymmetric functions, that is, functions $f$ of the form $f(x_sigma(1), ldots, x_sigma(N))
These arise in the context of quantum chemistry, and are the basic modeling tool for wavefunctions of Fermionic systems.
arXiv Detail & Related papers (2022-08-05T16:35:24Z) - A dualization approach to the Ground State Subspace Classification of Abelian Higher Gauge Symmetry Models [0.0]
Ground state degeneracy and entanglement entropy were thoroughly studied, but the classification of the ground state space remained obscure.
We show that the ground state space is classified by a $H0 (C,G) times H_0 (C,G)$ group, where $H0(C,G)$ is the $0$-th cohomology.
arXiv Detail & Related papers (2022-07-19T19:29:27Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Annihilating Entanglement Between Cones [77.34726150561087]
We show that Lorentz cones are the only cones with a symmetric base for which a certain stronger version of the resilience property is satisfied.
Our proof exploits the symmetries of the Lorentz cones and applies two constructions resembling protocols for entanglement distillation.
arXiv Detail & Related papers (2021-10-22T15:02:39Z) - Equivariant bifurcation, quadratic equivariants, and symmetry breaking
for the standard representation of $S_n$ [15.711517003382484]
Motivated by questions originating from the study of a class of shallow student-teacher neural networks, methods are developed for the analysis of spurious minima in classes of equivariant dynamics related to neural nets.
It is shown that spurious minima do not arise from spontaneous symmetry breaking but rather through a complex deformation of the landscape geometry that can be encoded by a generic $S_n$-equivariant bifurcation.
Results on generic bifurcation when there are quadratic equivariants are also proved; this work extends and clarifies results of Ihrig & Golubitsky and Chossat, Lauterback &
arXiv Detail & Related papers (2021-07-06T06:43:06Z) - Generalized string-nets for unitary fusion categories without
tetrahedral symmetry [77.34726150561087]
We present a general construction of the Levin-Wen model for arbitrary multiplicity-free unitary fusion categories.
We explicitly calculate the matrix elements of the Hamiltonian and, furthermore, show that it has the same properties as the original one.
arXiv Detail & Related papers (2020-04-15T12:21:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.