Entanglement asymmetry in the critical XXZ spin chain
- URL: http://arxiv.org/abs/2407.06427v1
- Date: Mon, 8 Jul 2024 22:16:22 GMT
- Title: Entanglement asymmetry in the critical XXZ spin chain
- Authors: Marco Lastres, Sara Murciano, Filiberto Ares, Pasquale Calabrese,
- Abstract summary: We study the explicit breaking of a $SU(2)$ symmetry to a $U(1)$ subgroup employing the entanglement asymmetry.
We consider as specific model the critical XXZ spin chain, which breaks the $SU(2)$ symmetry of spin rotations except at the isotropic point.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the explicit breaking of a $SU(2)$ symmetry to a $U(1)$ subgroup employing the entanglement asymmetry, a recently introduced observable that measures how much symmetries are broken in a part of extended quantum systems. We consider as specific model the critical XXZ spin chain, which breaks the $SU(2)$ symmetry of spin rotations except at the isotropic point, and is described by the massless compact boson in the continuum limit. We examine the $U(1)$ subgroup of $SU(2)$ that is broken outside the isotropic point by applying conformal perturbation theory, which we complement with numerical simulations on the lattice. We also analyse the entanglement asymmetry of the full $SU(2)$ group. By relying on very generic scaling arguments, we derive an asymptotic expression for it.
Related papers
- Strong-to-weak spontaneous symmetry breaking meets average symmetry-protected topological order [17.38734393793605]
We propose a new class of phases, termed the double ASPT phase, which emerges from a nontrivial extension of these two orders.
This new phase is absent from prior studies and cannot exist in conventional closed systems.
arXiv Detail & Related papers (2024-10-17T16:36:53Z) - Classification of symmetry protected states of quantum spin chains for continuous symmetry groups [0.0]
We show that SPT's corresponding to finite on-site symmetry groups $G$ are classified by the second cohomology group $H2(G,U(1))$.
We also strengthen the existing results in the sense that our classification results hold within the class of spin chains with locally bounded on-site dimensions.
arXiv Detail & Related papers (2024-09-02T09:41:13Z) - Symmetry-restricted quantum circuits are still well-behaved [45.89137831674385]
We show that quantum circuits restricted by a symmetry inherit the properties of the whole special unitary group $SU(2n)$.
It extends prior work on symmetric states to the operators and shows that the operator space follows the same structure as the state space.
arXiv Detail & Related papers (2024-02-26T06:23:39Z) - Entanglement asymmetry in CFT and its relation to non-topological
defects [0.0]
The entanglement asymmetry is an information based observable that quantifies the degree of symmetry breaking in a region of an extended quantum system.
We investigate this measure in the ground state of one dimensional critical systems described by a CFT.
arXiv Detail & Related papers (2024-02-05T19:01:09Z) - Remarks on effects of projective phase on eigenstate thermalization hypothesis [0.0]
We consider $mathbbZ_NtimesmathbbZ_N$ symmetries with nontrivial projective phases.
We also perform numerical analyses for $ (1+1)$-dimensional spin chains and the $ (2+1)$-dimensional lattice gauge theory.
arXiv Detail & Related papers (2023-10-17T17:36:37Z) - Non-equilibrium entanglement asymmetry for discrete groups: the example
of the XY spin chain [0.0]
The entanglement asymmetry is a novel quantity that, using entanglement methods, measures how much a symmetry is broken in a part of an extended quantum system.
We consider the XY spin chain, in which the ground state spontaneously breaks the $mathbbZ$ spin parity symmetry in the ferromagnetic phase.
We thoroughly investigate the non-equilibrium dynamics of this symmetry after a global quantum quench, generalising known results for the standard order parameter.
arXiv Detail & Related papers (2023-07-13T17:01:38Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
We design a deep-learning algorithm for the discovery and identification of the continuous group of symmetries present in a labeled dataset.
We use fully connected neural networks to model the transformations symmetry and the corresponding generators.
Our study also opens the door for using a machine learning approach in the mathematical study of Lie groups and their properties.
arXiv Detail & Related papers (2023-01-13T16:25:25Z) - Towards Antisymmetric Neural Ansatz Separation [48.80300074254758]
We study separations between two fundamental models of antisymmetric functions, that is, functions $f$ of the form $f(x_sigma(1), ldots, x_sigma(N))
These arise in the context of quantum chemistry, and are the basic modeling tool for wavefunctions of Fermionic systems.
arXiv Detail & Related papers (2022-08-05T16:35:24Z) - Symmetry from Entanglement Suppression [0.0]
We show that a minimally entangling $S$-matrix would give rise to global symmetries.
For $N_q$ species of qubit, the Identity gate is associated with an $[SU(2)]N_q$ symmetry.
arXiv Detail & Related papers (2021-04-22T02:50:10Z) - SYK meets non-Hermiticity II: measurement-induced phase transition [16.533265279392772]
We analytically derive the effective action in the large-$N$ limit and show that an entanglement transition is caused by the symmetry breaking in the enlarged replica space.
We also verify the large-$N$ critical exponents by numerically solving the Schwinger-Dyson equation.
arXiv Detail & Related papers (2021-04-16T17:55:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.