HybridDeepRx: Deep Learning Receiver for High-EVM Signals
- URL: http://arxiv.org/abs/2106.16079v1
- Date: Wed, 30 Jun 2021 14:10:01 GMT
- Title: HybridDeepRx: Deep Learning Receiver for High-EVM Signals
- Authors: Jaakko Pihlajasalo, Dani Korpi, Mikko Honkala, Janne M.J. Huttunen,
Taneli Riihonen, Jukka Talvitie, Alberto Brihuega, Mikko A. Uusitalo, Mikko
Valkama
- Abstract summary: We propose a machine learning (ML) based physical layer receiver solution for demodulating OFDM signals.
A novel deep learning based convolutional neural network receiver is devised, containing layers in both time- and frequency domains.
- Score: 13.678714245633596
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a machine learning (ML) based physical layer
receiver solution for demodulating OFDM signals that are subject to a high
level of nonlinear distortion. Specifically, a novel deep learning based
convolutional neural network receiver is devised, containing layers in both
time- and frequency domains, allowing to demodulate and decode the transmitted
bits reliably despite the high error vector magnitude (EVM) in the transmit
signal. Extensive set of numerical results is provided, in the context of 5G NR
uplink incorporating also measured terminal power amplifier characteristics.
The obtained results show that the proposed receiver system is able to clearly
outperform classical linear receivers as well as existing ML receiver
approaches, especially when the EVM is high in comparison with modulation
order. The proposed ML receiver can thus facilitate pushing the terminal power
amplifier (PA) systems deeper into saturation, and thereon improve the terminal
power-efficiency, radiated power and network coverage.
Related papers
- Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Learning OFDM Waveforms with PAPR and ACLR Constraints [15.423422040627331]
We propose a learning-based method to design OFDM-based waveforms that satisfy selected constraints while maximizing an achievable information rate.
We show that the end-to-end system is able to satisfy target PAPR and ACLR constraints and allows significant throughput gains.
arXiv Detail & Related papers (2021-10-21T08:58:59Z) - Waveform Learning for Next-Generation Wireless Communication Systems [16.26230847183709]
We propose a learning-based method for the joint design of a transmit and receive filter, the constellation geometry and associated bit labeling, as well as a neural network (NN)-based detector.
The method maximizes an achievable information rate, while simultaneously satisfying constraints on the adjacent channel leakage ratio (ACLR) and peak-to-average power ratio (PAPR)
arXiv Detail & Related papers (2021-09-02T14:51:16Z) - End-to-End Learning of OFDM Waveforms with PAPR and ACLR Constraints [15.423422040627331]
We propose to use a neural network (NN) at the transmitter to learn a high-dimensional modulation scheme allowing to control the PAPR and adjacent channel leakage ratio (ACLR)
The two NNs operate on top of OFDM, and are jointly optimized in and end-to-end manner using a training algorithm that enforces constraints on the PAPR and ACLR.
arXiv Detail & Related papers (2021-06-30T13:09:30Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
This paper proposes a model-driven deep learning (MDDL)-based channel estimation and feedback scheme for millimeter-wave (mmWave) systems.
To reduce the uplink pilot overhead for estimating the high-dimensional channels from a limited number of radio frequency (RF) chains, we propose to jointly train the phase shift network and the channel estimator as an auto-encoder.
Numerical results show that the proposed MDDL-based channel estimation and feedback scheme outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-22T13:34:53Z) - Distributional Reinforcement Learning for mmWave Communications with
Intelligent Reflectors on a UAV [119.97450366894718]
A novel communication framework that uses an unmanned aerial vehicle (UAV)-carried intelligent reflector (IR) is proposed.
In order to maximize the downlink sum-rate, the optimal precoding matrix (at the base station) and reflection coefficient (at the IR) are jointly derived.
arXiv Detail & Related papers (2020-11-03T16:50:37Z) - Massive MIMO As an Extreme Learning Machine [83.12538841141892]
A massive multiple-input multiple-output (MIMO) system with low-resolution analog-to-digital converters (ADCs) forms a natural extreme learning machine (ELM)
By adding random biases to the received signals and optimizing the ELM output weights, the system can effectively tackle hardware impairments.
arXiv Detail & Related papers (2020-07-01T04:15:20Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
This paper proposes a deep denoising neural network assisted compressive channel estimation for mmWave IRS systems.
We first introduce a hybrid passive/active IRS architecture, where very few receive chains are employed to estimate the uplink user-to-IRS channels.
The complete channel matrix can be reconstructed from the limited measurements based on compressive sensing.
arXiv Detail & Related papers (2020-06-03T12:18:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.