In-distribution adversarial attacks on object recognition models using gradient-free search
- URL: http://arxiv.org/abs/2106.16198v3
- Date: Thu, 30 Jan 2025 19:58:53 GMT
- Title: In-distribution adversarial attacks on object recognition models using gradient-free search
- Authors: Spandan Madan, Tomotake Sasaki, Hanspeter Pfister, Tzu-Mao Li, Xavier Boix,
- Abstract summary: We present evidence of perturbed images within the training data distribution, which networks fail to classify.
We train models on data sampled from parametric distributions, then search inside this data distribution to find such in-distribution adversarial examples.
Findings also extend to natural images from ImageNet and Co3D datasets.
- Score: 27.17685074149947
- License:
- Abstract: Neural networks are susceptible to small perturbations in the form of 2D rotations and shifts, image crops, and even changes in object colors. Past works attribute these errors to dataset bias, claiming that models fail on these perturbed samples as they do not belong to the training data distribution. Here, we challenge this claim and present evidence of the widespread existence of perturbed images within the training data distribution, which networks fail to classify. We train models on data sampled from parametric distributions, then search inside this data distribution to find such in-distribution adversarial examples. This is done using our gradient-free evolution strategies (ES) based approach which we call CMA-Search. Despite training with a large-scale (0.5 million images), unbiased dataset of camera and light variations, CMA-Search can find a failure inside the data distribution in over 71% cases by perturbing the camera position. With lighting changes, CMA-Search finds misclassifications in 42% cases. These findings also extend to natural images from ImageNet and Co3D datasets. This phenomenon of in-distribution images presents a highly worrisome problem for artificial intelligence -- they bypass the need for a malicious agent to add engineered noise to induce an adversarial attack. All code, datasets, and demos are available at https://github.com/Spandan-Madan/in_distribution_adversarial_examples.
Related papers
- Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Scaling by training on large datasets has been shown to enhance the quality and fidelity of image generation and manipulation with diffusion models.
Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.
Our results demonstrate significant performance gains in various scenarios when combined with different fine-tuning schemes.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - Diffusion Models Learn Low-Dimensional Distributions via Subspace Clustering [15.326641037243006]
diffusion models can effectively learn the image distribution and generate new samples.
We provide theoretical insights into this phenomenon by leveraging key empirical observations.
We show that the minimal number of samples required to learn the underlying distribution scales linearly with the intrinsic dimensions.
arXiv Detail & Related papers (2024-09-04T04:14:02Z) - Diffusion-based Image Generation for In-distribution Data Augmentation in Surface Defect Detection [8.93281936150572]
We show that diffusion models can be used in industrial scenarios to improve the data augmentation procedure.
We propose a novel approach for data augmentation that mixes out-of-distribution with in-distribution samples.
arXiv Detail & Related papers (2024-06-01T17:09:18Z) - The Journey, Not the Destination: How Data Guides Diffusion Models [75.19694584942623]
Diffusion models trained on large datasets can synthesize photo-realistic images of remarkable quality and diversity.
We propose a framework that: (i) provides a formal notion of data attribution in the context of diffusion models, and (ii) allows us to counterfactually validate such attributions.
arXiv Detail & Related papers (2023-12-11T08:39:43Z) - Learning Defect Prediction from Unrealistic Data [57.53586547895278]
Pretrained models of code have become popular choices for code understanding and generation tasks.
Such models tend to be large and require commensurate volumes of training data.
It has become popular to train models with far larger but less realistic datasets, such as functions with artificially injected bugs.
Models trained on such data tend to only perform well on similar data, while underperforming on real world programs.
arXiv Detail & Related papers (2023-11-02T01:51:43Z) - On quantifying and improving realism of images generated with diffusion [50.37578424163951]
We propose a metric, called Image Realism Score (IRS), computed from five statistical measures of a given image.
IRS is easily usable as a measure to classify a given image as real or fake.
We experimentally establish the model- and data-agnostic nature of the proposed IRS by successfully detecting fake images generated by Stable Diffusion Model (SDM), Dalle2, Midjourney and BigGAN.
Our efforts have also led to Gen-100 dataset, which provides 1,000 samples for 100 classes generated by four high-quality models.
arXiv Detail & Related papers (2023-09-26T08:32:55Z) - GSURE-Based Diffusion Model Training with Corrupted Data [35.56267114494076]
We propose a novel training technique for generative diffusion models based only on corrupted data.
We demonstrate our technique on face images as well as Magnetic Resonance Imaging (MRI)
arXiv Detail & Related papers (2023-05-22T15:27:20Z) - Masked Images Are Counterfactual Samples for Robust Fine-tuning [77.82348472169335]
Fine-tuning deep learning models can lead to a trade-off between in-distribution (ID) performance and out-of-distribution (OOD) robustness.
We propose a novel fine-tuning method, which uses masked images as counterfactual samples that help improve the robustness of the fine-tuning model.
arXiv Detail & Related papers (2023-03-06T11:51:28Z) - Fast Unsupervised Brain Anomaly Detection and Segmentation with
Diffusion Models [1.6352599467675781]
We propose a method based on diffusion models to detect and segment anomalies in brain imaging.
Our diffusion models achieve competitive performance compared with autoregressive approaches across a series of experiments with 2D CT and MRI data.
arXiv Detail & Related papers (2022-06-07T17:30:43Z) - Anomaly Detection in Image Datasets Using Convolutional Neural Networks,
Center Loss, and Mahalanobis Distance [0.0]
User activities generate a significant number of poor-quality or irrelevant images and data vectors.
For neural networks, the anomalous is usually defined as out-of-distribution samples.
This work proposes methods for supervised and semi-supervised detection of out-of-distribution samples in image datasets.
arXiv Detail & Related papers (2021-04-13T13:44:03Z) - Encoding Robustness to Image Style via Adversarial Feature Perturbations [72.81911076841408]
We adapt adversarial training by directly perturbing feature statistics, rather than image pixels, to produce robust models.
Our proposed method, Adversarial Batch Normalization (AdvBN), is a single network layer that generates worst-case feature perturbations during training.
arXiv Detail & Related papers (2020-09-18T17:52:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.