Leveraging Text-to-Image Generation for Handling Spurious Correlation
- URL: http://arxiv.org/abs/2503.17226v1
- Date: Fri, 21 Mar 2025 15:28:22 GMT
- Title: Leveraging Text-to-Image Generation for Handling Spurious Correlation
- Authors: Aryan Yazdan Parast, Basim Azam, Naveed Akhtar,
- Abstract summary: Deep neural networks trained with Empirical Risk Minimization (ERM) perform well when both training and test data come from the same domain.<n>ERM models may rely on spurious correlations that often exist between labels and irrelevant features of images, making predictions unreliable when those features do not exist.<n>We propose a technique to generate training samples with text-to-image (T2I) diffusion models for addressing the spurious correlation problem.
- Score: 24.940576844328408
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks trained with Empirical Risk Minimization (ERM) perform well when both training and test data come from the same domain, but they often fail to generalize to out-of-distribution samples. In image classification, these models may rely on spurious correlations that often exist between labels and irrelevant features of images, making predictions unreliable when those features do not exist. We propose a technique to generate training samples with text-to-image (T2I) diffusion models for addressing the spurious correlation problem. First, we compute the best describing token for the visual features pertaining to the causal components of samples by a textual inversion mechanism. Then, leveraging a language segmentation method and a diffusion model, we generate new samples by combining the causal component with the elements from other classes. We also meticulously prune the generated samples based on the prediction probabilities and attribution scores of the ERM model to ensure their correct composition for our objective. Finally, we retrain the ERM model on our augmented dataset. This process reduces the model's reliance on spurious correlations by learning from carefully crafted samples for in which this correlation does not exist. Our experiments show that across different benchmarks, our technique achieves better worst-group accuracy than the existing state-of-the-art methods.
Related papers
- Importance of Disjoint Sampling in Conventional and Transformer Models for Hyperspectral Image Classification [2.1223532600703385]
This paper presents an innovative disjoint sampling approach for training SOTA models on Hyperspectral image classification (HSIC) tasks.
By separating training, validation, and test data without overlap, the proposed method facilitates a fairer evaluation of how well a model can classify pixels it was not exposed to during training or validation.
This rigorous methodology is critical for advancing SOTA models and their real-world application to large-scale land mapping with Hyperspectral sensors.
arXiv Detail & Related papers (2024-04-23T11:40:52Z) - Decompose-and-Compose: A Compositional Approach to Mitigating Spurious Correlation [2.273629240935727]
We propose Decompose-and-Compose (DaC) to improve correlation shift by combining elements of images.
Based on our observations, models trained with Empirical Risk Minimization (ERM) usually highly attend to either the causal components or the components having a high spurious correlation with the label.
We propose a group-balancing method by intervening on images without requiring group labels or information regarding the spurious features during training.
arXiv Detail & Related papers (2024-02-29T07:24:24Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Self-Evolution Learning for Mixup: Enhance Data Augmentation on Few-Shot
Text Classification Tasks [75.42002070547267]
We propose a self evolution learning (SE) based mixup approach for data augmentation in text classification.
We introduce a novel instance specific label smoothing approach, which linearly interpolates the model's output and one hot labels of the original samples to generate new soft for label mixing up.
arXiv Detail & Related papers (2023-05-22T23:43:23Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
This study presents an empirical investigation into the evaluation of synthesis performance, with generative adversarial networks (GANs) as a representative of generative models.
In particular, we make in-depth analyses of various factors, including how to represent a data point in the representation space, how to calculate a fair distance using selected samples, and how many instances to use from each set.
arXiv Detail & Related papers (2023-04-04T17:54:32Z) - Score-based diffusion models for accelerated MRI [35.3148116010546]
We introduce a way to sample data from a conditional distribution given the measurements, such that the model can be readily used for solving inverse problems in imaging.
Our model requires magnitude images only for training, and yet is able to reconstruct complex-valued data, and even extends to parallel imaging.
arXiv Detail & Related papers (2021-10-08T08:42:03Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
We present a novel Partial Feature Decorrelation Learning (PFDL) algorithm, which jointly optimize a feature decomposition network and the target image classification model.
The experiments on real-world datasets demonstrate that our method can improve the backbone model's accuracy on OOD image classification datasets.
arXiv Detail & Related papers (2020-07-30T05:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.