Predicting quantum dynamical cost landscapes with deep learning
- URL: http://arxiv.org/abs/2107.00008v2
- Date: Wed, 14 Jul 2021 13:04:41 GMT
- Title: Predicting quantum dynamical cost landscapes with deep learning
- Authors: Mogens Dalgaard, Felix Motzoi, and Jacob Sherson
- Abstract summary: We introduce deep learning based modelling of the cost functional landscape.
We demonstrate an order of magnitude increases in accuracy and speed over state-of-the-art Bayesian methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: State-of-the-art quantum algorithms routinely tune dynamically parametrized
cost functionals for combinatorics, machine learning, equation-solving, or
energy minimization. However, large search complexity often demands many
(noisy) quantum measurements, leading to the increasing use of classical
probability models to estimate which areas in the cost functional landscape are
of highest interest. Introducing deep learning based modelling of the
landscape, we demonstrate an order of magnitude increases in accuracy and speed
over state-of-the-art Bayesian methods. Moreover, once trained the deep neural
network enables the extraction of information at a much faster rate than
conventional numerical simulation. This allows for on-the-fly experimental
optimizations and detailed classification of complexity and navigability
throughout the phase diagram of the landscape.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Neural auto-designer for enhanced quantum kernels [59.616404192966016]
We present a data-driven approach that automates the design of problem-specific quantum feature maps.
Our work highlights the substantial role of deep learning in advancing quantum machine learning.
arXiv Detail & Related papers (2024-01-20T03:11:59Z) - Neural Architecture Codesign for Fast Bragg Peak Analysis [1.7081438846690533]
We develop an automated pipeline to streamline neural architecture codesign for fast, real-time Bragg peak analysis in microscopy.
Our method employs neural architecture search and AutoML to enhance these models, including hardware costs, leading to the discovery of more hardware-efficient neural architectures.
arXiv Detail & Related papers (2023-12-10T19:42:18Z) - Generative modeling of time-dependent densities via optimal transport
and projection pursuit [3.069335774032178]
We propose a cheap alternative to popular deep learning algorithms for temporal modeling.
Our method is highly competitive compared with state-of-the-art solvers.
arXiv Detail & Related papers (2023-04-19T13:50:13Z) - Classical simulation of short-time quantum dynamics [0.0]
We present classical algorithms for approximating the dynamics of local observables and nonlocal quantities.
We establish a novel quantum speed limit, a bound on dynamical phase transitions, and a concentration bound for product states evolved for short times.
arXiv Detail & Related papers (2022-10-20T18:00:04Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
We introduce a deep learning-based corrector called Neural Vector (NeurVec)
NeurVec can compensate for integration errors and enable larger time step sizes in simulations.
Our experiments on a variety of complex dynamical system benchmarks demonstrate that NeurVec exhibits remarkable generalization capability.
arXiv Detail & Related papers (2022-08-07T09:02:18Z) - Physics-informed Deep Super-resolution for Spatiotemporal Data [18.688475686901082]
Deep learning can be used to augment scientific data based on coarse-grained simulations.
We propose a rich and efficient temporal super-resolution framework inspired by physics-informed learning.
Results demonstrate the superior effectiveness and efficiency of the proposed method compared with baseline algorithms.
arXiv Detail & Related papers (2022-08-02T13:57:35Z) - Simulation Paths for Quantum Circuit Simulation with Decision Diagrams [72.03286471602073]
We study the importance of the path that is chosen when simulating quantum circuits using decision diagrams.
We propose an open-source framework that allows to investigate dedicated simulation paths.
arXiv Detail & Related papers (2022-03-01T19:00:11Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
We show that conditions amenable to classical trainability via gradient descent coincide with those necessary for efficiently solving quantum linear systems.
We numerically demonstrate that the MNIST image dataset satisfies such conditions.
We provide empirical evidence for $O(log n)$ training of a convolutional neural network with pooling.
arXiv Detail & Related papers (2021-07-19T23:41:03Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.