論文の概要: Cross-Lingual Adaptation for Type Inference
- arxiv url: http://arxiv.org/abs/2107.00157v1
- Date: Thu, 1 Jul 2021 00:20:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-02 13:59:21.345686
- Title: Cross-Lingual Adaptation for Type Inference
- Title(参考訳): 型推論のための言語間適応
- Authors: Zhiming Li, Xiaofei Xie, Haoliang Li, Zhengzi Xu, Yi Li, Yang Liu
- Abstract要約: 弱い型付き言語間で深層学習に基づく型推論を行うための言語間適応フレームワークPLATOを提案する。
強く型付けされた言語からのデータを活用することで、PLATOは、バックボーンのクロスプログラミング言語モデルの難易度を改善する。
- 参考スコア(独自算出の注目度): 29.234418962960905
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based techniques have been widely applied to the program
analysis tasks, in fields such as type inference, fault localization, and code
summarization. Hitherto deep learning-based software engineering systems rely
thoroughly on supervised learning approaches, which require laborious manual
effort to collect and label a prohibitively large amount of data. However, most
Turing-complete imperative languages share similar control- and data-flow
structures, which make it possible to transfer knowledge learned from one
language to another. In this paper, we propose cross-lingual adaptation of
program analysis, which allows us to leverage prior knowledge learned from the
labeled dataset of one language and transfer it to the others. Specifically, we
implemented a cross-lingual adaptation framework, PLATO, to transfer a deep
learning-based type inference procedure across weakly typed languages, e.g.,
Python to JavaScript and vice versa. PLATO incorporates a novel joint graph
kernelized attention based on abstract syntax tree and control flow graph, and
applies anchor word augmentation across different languages. Besides, by
leveraging data from strongly typed languages, PLATO improves the perplexity of
the backbone cross-programming-language model and the performance of downstream
cross-lingual transfer for type inference. Experimental results illustrate that
our framework significantly improves the transferability over the baseline
method by a large margin.
- Abstract(参考訳): 深層学習に基づく手法は、型推論、フォールトローカライゼーション、コード要約といった分野において、プログラム解析タスクに広く応用されている。
hithertoのディープラーニングベースのソフトウェアエンジニアリングシステムは、膨大な量のデータを収集しラベル付けするのに手間のかかる手作業を必要とする教師付き学習アプローチに完全に依存している。
しかし、ほとんどのチューリング完全命令型言語は、同様の制御構造とデータフロー構造を持っているため、ある言語から別の言語へ学習した知識を転送することができる。
本稿では,プログラム解析の言語間適応を提案する。これにより,ラベル付きデータセットから学習した事前知識を他の言語に伝達することができる。
具体的には,言語間の適応フレームワークPLATOを実装して,PythonをJavaScriptやその逆など,弱い型付き言語間でディープラーニングベースの型推論手順を転送する。
PLATOは抽象構文木と制御フローグラフに基づく新しい結合グラフのカーネル化アテンションを導入し,様々な言語にアンカー語拡張を適用した。
さらに、強く型付けされた言語からのデータを活用することで、PLATOは、バックボーン言語モデルの複雑さを改善し、型推論のための下流言語間転送の性能を向上させる。
実験の結果,本フレームワークはベースラインメソッドの転送性を大幅に向上させることがわかった。
関連論文リスト
- Understanding Cross-Lingual Alignment -- A Survey [52.572071017877704]
言語間アライメントは多言語言語モデルにおける言語間の表現の有意義な類似性である。
本研究は,言語間アライメントの向上,手法の分類,分野全体からの洞察の要約といった手法の文献を調査する。
論文 参考訳(メタデータ) (2024-04-09T11:39:53Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
本稿では,インスタンスを条件付きで符号化するためのフレキシブルガイダンスとして,コンテキスト的にプロンプトを検索するXLM-Pを提案する。
我々のXLM-Pは、(1)言語間における言語不変および言語固有知識の軽量なモデリングを可能にし、(2)他の多言語事前学習手法との容易な統合を可能にする。
論文 参考訳(メタデータ) (2023-06-13T08:08:08Z) - On the cross-lingual transferability of multilingual prototypical models
across NLU tasks [2.44288434255221]
教師付きディープラーニングベースのアプローチはタスク指向のダイアログに適用され、限られたドメインや言語アプリケーションに有効であることが証明されている。
実際には、これらのアプローチはドメイン駆動設計とアンダーリソース言語の欠点に悩まされている。
本稿では,原型ニューラルネットワークと多言語トランスフォーマーモデルを用いた相乗的少数ショット学習の言語間変換可能性について検討する。
論文 参考訳(メタデータ) (2022-07-19T09:55:04Z) - A Comprehensive Understanding of Code-mixed Language Semantics using
Hierarchical Transformer [28.3684494647968]
コード混合言語のセマンティクスを学習するための階層型トランスフォーマーベースアーキテクチャ(HIT)を提案する。
提案手法を17のデータセット上で6つのインド語と9つのNLPタスクで評価した。
論文 参考訳(メタデータ) (2022-04-27T07:50:18Z) - Incorporating Linguistic Knowledge for Abstractive Multi-document
Summarization [20.572283625521784]
ニューラルネットワークに基づく抽象的多文書要約(MDS)モデルを開発した。
依存関係情報を言語誘導型注意機構に処理する。
言語信号の助けを借りて、文レベルの関係を正しく捉えることができる。
論文 参考訳(メタデータ) (2021-09-23T08:13:35Z) - Reinforced Iterative Knowledge Distillation for Cross-Lingual Named
Entity Recognition [54.92161571089808]
言語間NERは、知識をリッチリソース言語から低リソース言語に転送する。
既存の言語間NERメソッドは、ターゲット言語でリッチなラベル付けされていないデータをうまく利用しない。
半教師付き学習と強化学習のアイデアに基づく新しいアプローチを開発する。
論文 参考訳(メタデータ) (2021-06-01T05:46:22Z) - Cross-lingual Text Classification with Heterogeneous Graph Neural
Network [2.6936806968297913]
言語間テキスト分類は、ソース言語上の分類器を訓練し、その知識を対象言語に伝達することを目的としている。
近年の多言語事前学習言語モデル (mPLM) は言語間分類タスクにおいて顕著な結果をもたらす。
言語間テキスト分類のための言語内および言語間における異種情報を統合するための,単純かつ効果的な手法を提案する。
論文 参考訳(メタデータ) (2021-05-24T12:45:42Z) - Multilingual Transfer Learning for Code-Switched Language and Speech
Neural Modeling [12.497781134446898]
本稿では,言語非依存なマルチタスク学習手法を提案することにより,言語理論のデータ不足と限界に対処する。
まず,メタラーニングに基づくメタトランスファー学習を提案する。そこでは,高音源単言語音声データから,コードスイッチング領域への情報抽出を行う。
第2に,他の言語で学習した有用な知識を得ることにより,コードスイッチングデータを効果的に表現するための,多言語メタエム手法を提案する。
第3に,言語モデルへの伝達学習戦略として構文情報を統合するために,マルチタスク学習を導入する。
論文 参考訳(メタデータ) (2021-04-13T14:49:26Z) - FILTER: An Enhanced Fusion Method for Cross-lingual Language
Understanding [85.29270319872597]
我々は,XLMファインタニングの入力として言語間データを利用する拡張融合法を提案する。
推論中は、ターゲット言語で入力されたテキストとソース言語の翻訳に基づいて予測を行う。
この問題に対処するため,対象言語における翻訳テキストのための自動生成ソフト擬似ラベルに基づくモデル学習のためのKL分割自己学習損失を提案する。
論文 参考訳(メタデータ) (2020-09-10T22:42:15Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
特異ベクトル標準相関解析を用いて、各情報源からどのような情報が誘導されるかを調べる。
我々の表現は類型学を組み込み、言語関係と相関関係を強化する。
次に、多言語機械翻訳のための多視点言語ベクトル空間を利用して、競合する全体的な翻訳精度を実現する。
論文 参考訳(メタデータ) (2020-04-30T16:25:39Z) - Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer [64.22926988297685]
下流タスクで微調整される前に、まずデータリッチタスクでモデルが事前訓練されるトランスファーラーニングは、自然言語処理(NLP)において強力な手法として登場した。
本稿では,すべてのテキストベースの言語問題をテキスト・トゥ・テキスト・フォーマットに変換する統一フレームワークにより,NLPのためのトランスファー学習手法を導入する状況について検討する。
論文 参考訳(メタデータ) (2019-10-23T17:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。