Unsupervised Model Drift Estimation with Batch Normalization Statistics
for Dataset Shift Detection and Model Selection
- URL: http://arxiv.org/abs/2107.00191v1
- Date: Thu, 1 Jul 2021 03:04:47 GMT
- Title: Unsupervised Model Drift Estimation with Batch Normalization Statistics
for Dataset Shift Detection and Model Selection
- Authors: Wonju Lee, Seok-Yong Byun, Jooeun Kim, Minje Park, Kirill Chechil
- Abstract summary: We propose a novel method of model drift estimation by exploiting statistics of batch normalization layer on unlabeled test data.
We show the effectiveness of our method not only on dataset shift detection but also on model selection when there are multiple candidate models among model zoo or training trajectories in an unsupervised way.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: While many real-world data streams imply that they change frequently in a
nonstationary way, most of deep learning methods optimize neural networks on
training data, and this leads to severe performance degradation when dataset
shift happens. However, it is less possible to annotate or inspect newly
streamed data by humans, and thus it is desired to measure model drift at
inference time in an unsupervised manner. In this paper, we propose a novel
method of model drift estimation by exploiting statistics of batch
normalization layer on unlabeled test data. To remedy possible sampling error
of streamed input data, we adopt low-rank approximation to each
representational layer. We show the effectiveness of our method not only on
dataset shift detection but also on model selection when there are multiple
candidate models among model zoo or training trajectories in an unsupervised
way. We further demonstrate the consistency of our method by comparing model
drift scores between different network architectures.
Related papers
- Uncertainty Measurement of Deep Learning System based on the Convex Hull of Training Sets [0.13265175299265505]
We propose To-hull Uncertainty and Closure Ratio, which measures an uncertainty of trained model based on the convex hull of training data.
It can observe the positional relation between the convex hull of the learned data and an unseen sample and infer how extrapolate the sample is from the convex hull.
arXiv Detail & Related papers (2024-05-25T06:25:24Z) - Learning Defect Prediction from Unrealistic Data [57.53586547895278]
Pretrained models of code have become popular choices for code understanding and generation tasks.
Such models tend to be large and require commensurate volumes of training data.
It has become popular to train models with far larger but less realistic datasets, such as functions with artificially injected bugs.
Models trained on such data tend to only perform well on similar data, while underperforming on real world programs.
arXiv Detail & Related papers (2023-11-02T01:51:43Z) - Diffusion-Model-Assisted Supervised Learning of Generative Models for
Density Estimation [10.793646707711442]
We present a framework for training generative models for density estimation.
We use the score-based diffusion model to generate labeled data.
Once the labeled data are generated, we can train a simple fully connected neural network to learn the generative model in the supervised manner.
arXiv Detail & Related papers (2023-10-22T23:56:19Z) - LARA: A Light and Anti-overfitting Retraining Approach for Unsupervised
Time Series Anomaly Detection [49.52429991848581]
We propose a Light and Anti-overfitting Retraining Approach (LARA) for deep variational auto-encoder based time series anomaly detection methods (VAEs)
This work aims to make three novel contributions: 1) the retraining process is formulated as a convex problem and can converge at a fast rate as well as prevent overfitting; 2) designing a ruminate block, which leverages the historical data without the need to store them; and 3) mathematically proving that when fine-tuning the latent vector and reconstructed data, the linear formations can achieve the least adjusting errors between the ground truths and the fine-tuned ones.
arXiv Detail & Related papers (2023-10-09T12:36:16Z) - Uncovering Drift in Textual Data: An Unsupervised Method for Detecting
and Mitigating Drift in Machine Learning Models [9.035254826664273]
Drift in machine learning refers to the phenomenon where the statistical properties of data or context, in which the model operates, change over time leading to a decrease in its performance.
In our proposed unsupervised drift detection method, we follow a two step process. Our first step involves encoding a sample of production data as the target distribution, and the model training data as the reference distribution.
Our method also identifies the subset of production data that is the root cause of the drift.
The models retrained using these identified high drift samples show improved performance on online customer experience quality metrics.
arXiv Detail & Related papers (2023-09-07T16:45:42Z) - Unsupervised Unlearning of Concept Drift with Autoencoders [5.41354952642957]
Concept drift refers to a change in the data distribution affecting the data stream of future samples.
This paper proposes an unsupervised and model-agnostic concept drift adaptation method at the global level.
arXiv Detail & Related papers (2022-11-23T14:52:49Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
We show how a new model, similar to a logistic regression, may be learned from aggregated data only by approximating the unobserved feature distribution with a maximum entropy hypothesis.
We present empirical evidence on several public datasets that the model learned this way can achieve performances comparable to those of a logistic model trained with the full unaggregated data.
arXiv Detail & Related papers (2022-10-05T09:17:27Z) - Autoregressive based Drift Detection Method [0.0]
We propose a new concept drift detection method based on autoregressive models called ADDM.
Our results show that this new concept drift detection method outperforms the state-of-the-art drift detection methods.
arXiv Detail & Related papers (2022-03-09T14:36:16Z) - Training on Test Data with Bayesian Adaptation for Covariate Shift [96.3250517412545]
Deep neural networks often make inaccurate predictions with unreliable uncertainty estimates.
We derive a Bayesian model that provides for a well-defined relationship between unlabeled inputs under distributional shift and model parameters.
We show that our method improves both accuracy and uncertainty estimation.
arXiv Detail & Related papers (2021-09-27T01:09:08Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
We introduce the importance of guided gradient descent (IGSGD) method to train inference from inputs containing missing values without imputation.
We employ reinforcement learning (RL) to adjust the gradients used to train the models via back-propagation.
Our imputation-free predictions outperform the traditional two-step imputation-based predictions using state-of-the-art imputation methods.
arXiv Detail & Related papers (2021-07-05T12:44:39Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.