Autoregressive based Drift Detection Method
- URL: http://arxiv.org/abs/2203.04769v2
- Date: Sun, 11 Jun 2023 10:09:39 GMT
- Title: Autoregressive based Drift Detection Method
- Authors: Mansour Zoubeirou A Mayaki and Michel Riveill
- Abstract summary: We propose a new concept drift detection method based on autoregressive models called ADDM.
Our results show that this new concept drift detection method outperforms the state-of-the-art drift detection methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the classic machine learning framework, models are trained on historical
data and used to predict future values. It is assumed that the data
distribution does not change over time (stationarity). However, in real-world
scenarios, the data generation process changes over time and the model has to
adapt to the new incoming data. This phenomenon is known as concept drift and
leads to a decrease in the predictive model's performance. In this study, we
propose a new concept drift detection method based on autoregressive models
called ADDM. This method can be integrated into any machine learning algorithm
from deep neural networks to simple linear regression model. Our results show
that this new concept drift detection method outperforms the state-of-the-art
drift detection methods, both on synthetic data sets and real-world data sets.
Our approach is theoretically guaranteed as well as empirical and effective for
the detection of various concept drifts. In addition to the drift detector, we
proposed a new method of concept drift adaptation based on the severity of the
drift.
Related papers
- Non-Stationary Learning of Neural Networks with Automatic Soft Parameter Reset [98.52916361979503]
We introduce a novel learning approach that automatically models and adapts to non-stationarity.
We show empirically that our approach performs well in non-stationary supervised and off-policy reinforcement learning settings.
arXiv Detail & Related papers (2024-11-06T16:32:40Z) - DriftGAN: Using historical data for Unsupervised Recurring Drift Detection [0.6358693097475243]
In real-world applications, input data distributions are rarely static over a period of time, a phenomenon known as concept drift.
Most concept drift detection methods work on detecting concept drifts and signalling the requirement to retrain the model.
We present an unsupervised method based on Generative Adversarial Networks(GAN) to detect concept drifts and identify whether a specific concept drift occurred in the past.
arXiv Detail & Related papers (2024-07-09T04:38:44Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Unsupervised Unlearning of Concept Drift with Autoencoders [5.41354952642957]
Concept drift refers to a change in the data distribution affecting the data stream of future samples.
This paper proposes an unsupervised and model-agnostic concept drift adaptation method at the global level.
arXiv Detail & Related papers (2022-11-23T14:52:49Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - Detecting Concept Drift With Neural Network Model Uncertainty [0.0]
Uncertainty Drift Detection (UDD) is able to detect drifts without access to true labels.
In contrast to input data-based drift detection, our approach considers the effects of the current input data on the properties of the prediction model.
We show that UDD outperforms other state-of-the-art strategies on two synthetic as well as ten real-world data sets for both regression and classification tasks.
arXiv Detail & Related papers (2021-07-05T08:56:36Z) - Automatic Learning to Detect Concept Drift [40.69280758487987]
We propose Meta-ADD, a novel framework that learns to classify concept drift by tracking the changed pattern of error rates.
Specifically, in the training phase, we extract meta-features based on the error rates of various concept drift, after which a meta-detector is developed via prototypical neural network.
In the detection phase, the learned meta-detector is fine-tuned to adapt to the corresponding data stream via stream-based active learning.
arXiv Detail & Related papers (2021-05-04T11:10:39Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
We show that a measure of a model's training speed can be used to estimate its marginal likelihood.
We verify our results in model selection tasks for linear models and for the infinite-width limit of deep neural networks.
Our results suggest a promising new direction towards explaining why neural networks trained with gradient descent are biased towards functions that generalize well.
arXiv Detail & Related papers (2020-10-27T17:56:14Z) - DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift [12.579800289829963]
When learning from streaming data, a change in the data distribution, also known as concept drift, can render a previously-learned model inaccurate.
We present an adaptive learning algorithm that extends previous drift-detection-based methods by incorporating drift detection into a broader stable-state/reactive-state process.
The algorithm is generic in its base learner and can be applied across a variety of supervised learning problems.
arXiv Detail & Related papers (2020-03-13T23:25:25Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.