論文の概要: Optimal Power Allocation for Rate Splitting Communications with Deep
Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2107.00238v1
- Date: Thu, 1 Jul 2021 06:32:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-02 23:41:07.687787
- Title: Optimal Power Allocation for Rate Splitting Communications with Deep
Reinforcement Learning
- Title(参考訳): 深層強化学習を用いたレート分割通信における最適電力割当
- Authors: Nguyen Quang Hieu, Dinh Thai Hoang, Dusit Niyato, and Dong In Kim
- Abstract要約: このレターでは、レート分割多重アクセスネットワークにおいて、ユーザの電力割り当てを最適化するための新しいフレームワークを紹介します。
ネットワークでは、ユーザのために意図されたメッセージは、単一の共通部分と個々のプライベート部分に分割される。
- 参考スコア(独自算出の注目度): 61.91604046990993
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This letter introduces a novel framework to optimize the power allocation for
users in a Rate Splitting Multiple Access (RSMA) network. In the network,
messages intended for users are split into different parts that are a single
common part and respective private parts. This mechanism enables RSMA to
flexibly manage interference and thus enhance energy and spectral efficiency.
Although possessing outstanding advantages, optimizing power allocation in RSMA
is very challenging under the uncertainty of the communication channel and the
transmitter has limited knowledge of the channel information. To solve the
problem, we first develop a Markov Decision Process framework to model the
dynamic of the communication channel. The deep reinforcement algorithm is then
proposed to find the optimal power allocation policy for the transmitter
without requiring any prior information of the channel. The simulation results
show that the proposed scheme can outperform baseline schemes in terms of
average sum-rate under different power and QoS requirements.
- Abstract(参考訳): 本稿では、RSMA(Rate Splitting Multiple Access)ネットワークにおいて、ユーザの電力割り当てを最適化するための新しいフレームワークを紹介する。
ネットワークでは、ユーザが意図するメッセージは、単一の共通部分と個々のプライベート部分からなる異なる部分に分割される。
この機構によりRSMAはフレキシブルに干渉を管理し、エネルギーとスペクトル効率を高めることができる。
通信チャネルの不確実性下では、rsmaにおける電力割り当ての最適化は非常に困難であり、送信者はチャネル情報に関する知識が限られている。
そこで我々はまず,通信チャネルの動的動作をモデル化するマルコフ決定プロセスフレームワークを開発した。
次に, チャネルの事前情報を必要とせずに, 送信機の最適電力割当方針を求めるために, 深層補強アルゴリズムを提案する。
シミュレーションの結果,提案手法は電力とqosの異なる条件下で平均和率でベースラインスキームを上回ることができることがわかった。
関連論文リスト
- GNN-Based Joint Channel and Power Allocation in Heterogeneous Wireless Networks [9.031738020845586]
本稿では、異種無線ネットワークにおける共同資源配分問題に対処するGNNに基づくアルゴリズムを提案する。
提案アルゴリズムは,従来の最適化アルゴリズムと比較して高い計算効率で良好な性能を実現する。
論文 参考訳(メタデータ) (2024-07-28T04:51:00Z) - Multiagent Reinforcement Learning with an Attention Mechanism for
Improving Energy Efficiency in LoRa Networks [52.96907334080273]
ネットワーク規模が大きくなるにつれて、パケット衝突によるLoRaネットワークのエネルギー効率は急激に低下する。
マルチエージェント強化学習(MALoRa)に基づく伝送パラメータ割り当てアルゴリズムを提案する。
シミュレーションの結果,MALoRaはベースラインアルゴリズムと比較してシステムEEを著しく改善することがわかった。
論文 参考訳(メタデータ) (2023-09-16T11:37:23Z) - Sum-Rate Maximization of RSMA-based Aerial Communications with Energy
Harvesting: A Reinforcement Learning Approach [5.35414932422173]
自給自足の航空基地局は、収穫されたエネルギーを利用して複数の利用者にサービスを提供する。
長期的観点からの総和率の最大化を考慮し、深層強化学習(DRL)アプローチを用いる。
提案手法は,平均和レート性能において,いくつかの基本手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-22T15:38:22Z) - Deep Reinforcement Learning in mmW-NOMA: Joint Power Allocation and
Hybrid Beamforming [0.0]
ミリ波(mmW)周波数帯域における非直交多重アクセス(NOMA)アプローチにより、データレートの高要求が保証される。
mmW-NOMAシステムの連系電力配分とハイブリッドビームフォーミングは、機械学習と制御理論のアプローチの最近の進歩によってもたらされる。
論文 参考訳(メタデータ) (2022-05-13T07:55:48Z) - Federated Learning for Energy-limited Wireless Networks: A Partial Model
Aggregation Approach [79.59560136273917]
デバイス間の限られた通信資源、帯域幅とエネルギー、およびデータ不均一性は、連邦学習(FL)の主要なボトルネックである
まず、部分モデルアグリゲーション(PMA)を用いた新しいFLフレームワークを考案する。
提案されたPMA-FLは、2つの典型的な異種データセットにおいて2.72%と11.6%の精度を改善する。
論文 参考訳(メタデータ) (2022-04-20T19:09:52Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
協調学習技術のパラダイムとしてのフェデレートラーニング(FL)は研究の注目を集めている。
無線システム上での高速応答および高精度FLスキームの検証が重要である。
提案する通信効率のよいフェデレーション学習フレームワークは,強い線形速度で収束することを示す。
論文 参考訳(メタデータ) (2021-10-22T13:25:57Z) - A Q-Learning-based Approach for Distributed Beam Scheduling in mmWave
Networks [18.22250038264899]
ミリ波(mmWave)セルネットワークにおける分散ダウンリンクビームスケジューリングと電力配分の問題点を考察する。
異なるサービス事業者に属する複数の基地局は同じ無許可のスペクトルを共有しており、中心的な調整や協調は行われていない。
本稿では,各BSを独立したQ学習エージェントとしてモデル化し,分散スケジューリング手法を提案する。
論文 参考訳(メタデータ) (2021-10-17T02:58:13Z) - Learning based E2E Energy Efficient in Joint Radio and NFV Resource
Allocation for 5G and Beyond Networks [21.60295771932728]
無線部に電力とスペクトル資源を割り当てる最適化問題を定式化する。
コア部では、すべてのユーザの効率を確保するために、関数の連鎖、配置、スケジューリングを行う。
次に、最大エントロピーフレームワークに基づくソフトアクター・クリティカル・ディープラーニング(SAC-DRL)アルゴリズムを用いて、上記のMDPを解く。
論文 参考訳(メタデータ) (2021-07-13T11:19:48Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
非直交多重アクセス(NOMA)は、5Gネットワーク以降で大規模なマシンタイプ通信(mMTC)を可能にする重要な技術です。
本稿では,高密度空間分散マルチセル無線IoTネットワークにおけるランダムアクセス効率向上のために,NOMAを適用した。
ユーザ期待容量の幾何学的平均を最大化するために,各IoTデバイスの伝送確率を調整したランダムチャネルアクセス管理の新たな定式化を提案する。
論文 参考訳(メタデータ) (2021-01-02T15:21:08Z) - Communication Efficient Federated Learning with Energy Awareness over
Wireless Networks [51.645564534597625]
フェデレートラーニング(FL)では、パラメータサーバとモバイルデバイスが無線リンク上でトレーニングパラメータを共有する。
我々は、勾配の符号のみを交換するSignSGDという考え方を採用する。
2つの最適化問題を定式化し、学習性能を最適化する。
FLでは非常に不均一な方法でモバイルデバイスに分散される可能性があることを考慮し,手話に基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-04-15T21:25:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。