論文の概要: Using Anomaly Feature Vectors for Detecting, Classifying and Warning of
Outlier Adversarial Examples
- arxiv url: http://arxiv.org/abs/2107.00561v1
- Date: Thu, 1 Jul 2021 16:00:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-02 13:31:13.740813
- Title: Using Anomaly Feature Vectors for Detecting, Classifying and Warning of
Outlier Adversarial Examples
- Title(参考訳): anomaly feature vectorsを用いたoutlier adversarial examplesの検出,分類,警告
- Authors: Nelson Manohar-Alers, Ryan Feng, Sahib Singh, Jiguo Song, Atul Prakash
- Abstract要約: 分類ニューラルネットワークに提示される敵入力を検出し,分類し,警告するシステムであるDeClaWについて述べる。
予備的な発見は、AFVがCIFAR-10データセット上で93%近い精度で、いくつかの種類の敵攻撃を区別するのに役立つことを示唆している。
- 参考スコア(独自算出の注目度): 4.096598295525345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present DeClaW, a system for detecting, classifying, and warning of
adversarial inputs presented to a classification neural network. In contrast to
current state-of-the-art methods that, given an input, detect whether an input
is clean or adversarial, we aim to also identify the types of adversarial
attack (e.g., PGD, Carlini-Wagner or clean). To achieve this, we extract
statistical profiles, which we term as anomaly feature vectors, from a set of
latent features. Preliminary findings suggest that AFVs can help distinguish
among several types of adversarial attacks (e.g., PGD versus Carlini-Wagner)
with close to 93% accuracy on the CIFAR-10 dataset. The results open the door
to using AFV-based methods for exploring not only adversarial attack detection
but also classification of the attack type and then design of attack-specific
mitigation strategies.
- Abstract(参考訳): 分類ニューラルネットワークに提示される敵入力を検出し,分類し,警告するシステムであるDeClaWについて述べる。
入力がクリーンかどうかを判断する現在の最先端の手法とは対照的に、私たちはまた、敵攻撃の種類(PGD、Carini-Wagner、クリーンなど)を特定することを目指している。
これを実現するために,潜在特徴の集合から,異常特徴ベクトルと呼ばれる統計プロファイルを抽出する。
予備的な発見は、AFVがCIFAR-10データセットで93%近い精度でいくつかの種類の敵攻撃(PGD対Carini-Wagnerなど)を区別するのに役立つことを示唆している。
その結果,adversarial attack detectionだけでなく,攻撃タイプの分類や攻撃固有の緩和戦略の設計にもafvベースの手法が用いられるようになった。
関連論文リスト
- AdvQDet: Detecting Query-Based Adversarial Attacks with Adversarial Contrastive Prompt Tuning [93.77763753231338]
CLIP画像エンコーダを微調整し、2つの中間対向クエリに対して同様の埋め込みを抽出するために、ACPT(Adversarial Contrastive Prompt Tuning)を提案する。
我々は,ACPTが7つの最先端クエリベースの攻撃を検出できることを示す。
また,ACPTは3種類のアダプティブアタックに対して堅牢であることを示す。
論文 参考訳(メタデータ) (2024-08-04T09:53:50Z) - PASA: Attack Agnostic Unsupervised Adversarial Detection using Prediction & Attribution Sensitivity Analysis [2.5347892611213614]
分類のためのディープニューラルネットワークは、サンプル入力に対する小さな摂動が誤った予測につながる敵攻撃に対して脆弱である。
本研究では, モデル予測と特徴属性のこの特性の実用的手法を開発し, 対向サンプルを検出する。
本手法は,敵が防御機構を認識した場合でも,競争性能を示す。
論文 参考訳(メタデータ) (2024-04-12T21:22:21Z) - On Trace of PGD-Like Adversarial Attacks [77.75152218980605]
敵対的攻撃は、ディープラーニングアプリケーションに対する安全性とセキュリティ上の懸念を引き起こす。
モデルの勾配一貫性を反映した適応応答特性(ARC)特性を構築する。
私たちの方法は直感的で、軽量で、非侵襲的で、データ不要です。
論文 参考訳(メタデータ) (2022-05-19T14:26:50Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
本研究は,数発の分類器を敵攻撃から守るための概念的簡便なアプローチについて検討する。
本稿では,自己相似性とフィルタリングの概念を用いた簡易な攻撃非依存検出法を提案する。
ミニイメージネット(MI)とCUBデータセットの攻撃検出性能は良好である。
論文 参考訳(メタデータ) (2021-10-24T05:46:03Z) - ExAD: An Ensemble Approach for Explanation-based Adversarial Detection [17.455233006559734]
説明手法のアンサンブルを用いて逆例を検出するフレームワークであるExADを提案する。
3つの画像データセットに対する6つの最先端の敵攻撃によるアプローチの評価を行った。
論文 参考訳(メタデータ) (2021-03-22T00:53:07Z) - Detection of Adversarial Supports in Few-shot Classifiers Using Feature
Preserving Autoencoders and Self-Similarity [89.26308254637702]
敵対的なサポートセットを強調するための検出戦略を提案する。
我々は,特徴保存型オートエンコーダフィルタリングと,この検出を行うサポートセットの自己相似性の概念を利用する。
提案手法は攻撃非依存であり, 最善の知識まで, 数発分類器の検出を探索する最初の方法である。
論文 参考訳(メタデータ) (2020-12-09T14:13:41Z) - Learning to Separate Clusters of Adversarial Representations for Robust
Adversarial Detection [50.03939695025513]
本稿では,最近導入された非破壊的特徴を動機とした新しい確率的対向検出器を提案する。
本稿では,非ロバスト特徴を逆例の共通性と考え,その性質に対応する表現空間におけるクラスターの探索が可能であることを推定する。
このアイデアは、別のクラスタ内の逆表現の確率推定分布を導出し、その分布を確率に基づく逆検出器として活用する。
論文 参考訳(メタデータ) (2020-12-07T07:21:18Z) - Anomaly Detection-Based Unknown Face Presentation Attack Detection [74.4918294453537]
異常検出に基づくスプーフ攻撃検出は、顔提示攻撃検出の最近の進歩である。
本稿では,異常検出に基づくスプーフ攻撃検出のためのディープラーニングソリューションを提案する。
提案手法はCNNの表現学習能力の恩恵を受け,fPADタスクの優れた特徴を学習する。
論文 参考訳(メタデータ) (2020-07-11T21:20:55Z) - Adversarial Detection and Correction by Matching Prediction
Distributions [0.0]
この検出器は、MNISTとFashion-MNISTに対するCarini-WagnerやSLIDEのような強力な攻撃をほぼ完全に中和する。
本手法は,攻撃者がモデルと防御の両方について十分な知識を持つホワイトボックス攻撃の場合においても,なおも敵の例を検出することができることを示す。
論文 参考訳(メタデータ) (2020-02-21T15:45:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。