Blind Image Super-Resolution via Contrastive Representation Learning
- URL: http://arxiv.org/abs/2107.00708v1
- Date: Thu, 1 Jul 2021 19:34:23 GMT
- Title: Blind Image Super-Resolution via Contrastive Representation Learning
- Authors: Jiahui Zhang, Shijian Lu, Fangneng Zhan, Yingchen Yu
- Abstract summary: We design a contrastive representation learning network that focuses on blind SR of images with multi-modal and spatially variant distributions.
We show that the proposed CRL-SR can handle multi-modal and spatially variant degradation effectively under blind settings.
It also outperforms state-of-the-art SR methods qualitatively and quantitatively.
- Score: 41.17072720686262
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image super-resolution (SR) research has witnessed impressive progress thanks
to the advance of convolutional neural networks (CNNs) in recent years.
However, most existing SR methods are non-blind and assume that degradation has
a single fixed and known distribution (e.g., bicubic) which struggle while
handling degradation in real-world data that usually follows a multi-modal,
spatially variant, and unknown distribution. The recent blind SR studies
address this issue via degradation estimation, but they do not generalize well
to multi-source degradation and cannot handle spatially variant degradation. We
design CRL-SR, a contrastive representation learning network that focuses on
blind SR of images with multi-modal and spatially variant distributions. CRL-SR
addresses the blind SR challenges from two perspectives. The first is
contrastive decoupling encoding which introduces contrastive learning to
extract resolution-invariant embedding and discard resolution-variant embedding
under the guidance of a bidirectional contrastive loss. The second is
contrastive feature refinement which generates lost or corrupted high-frequency
details under the guidance of a conditional contrastive loss. Extensive
experiments on synthetic datasets and real images show that the proposed CRL-SR
can handle multi-modal and spatially variant degradation effectively under
blind settings and it also outperforms state-of-the-art SR methods
qualitatively and quantitatively.
Related papers
- Latent Diffusion, Implicit Amplification: Efficient Continuous-Scale Super-Resolution for Remote Sensing Images [7.920423405957888]
E$2$DiffSR achieves superior objective metrics and visual quality compared to the state-of-the-art SR methods.
It reduces the inference time of diffusion-based SR methods to a level comparable to that of non-diffusion methods.
arXiv Detail & Related papers (2024-10-30T09:14:13Z) - Content-decoupled Contrastive Learning-based Implicit Degradation Modeling for Blind Image Super-Resolution [33.16889233975723]
Implicit degradation modeling-based blind super-resolution (SR) has attracted more increasing attention in the community.
We propose a new Content-decoupled Contrastive Learning-based blind image super-resolution (CdCL) framework.
arXiv Detail & Related papers (2024-08-10T04:51:43Z) - BlindDiff: Empowering Degradation Modelling in Diffusion Models for Blind Image Super-Resolution [52.47005445345593]
BlindDiff is a DM-based blind SR method to tackle the blind degradation settings in SISR.
BlindDiff seamlessly integrates the MAP-based optimization into DMs.
Experiments on both synthetic and real-world datasets show that BlindDiff achieves the state-of-the-art performance.
arXiv Detail & Related papers (2024-03-15T11:21:34Z) - Blind Super-Resolution for Remote Sensing Images via Conditional
Stochastic Normalizing Flows [14.882417028542855]
We propose a novel blind SR framework based on the normalizing flow (BlindSRSNF) to address the above problems.
BlindSRSNF learns the conditional probability distribution over the high-resolution image space given a low-resolution (LR) image by explicitly optimizing the variational bound on the likelihood.
We show that the proposed algorithm can obtain SR results with excellent visual perception quality on both simulated LR and real-world RSIs.
arXiv Detail & Related papers (2022-10-14T12:37:32Z) - Meta-Learning based Degradation Representation for Blind
Super-Resolution [54.93926549648434]
We propose a Meta-Learning based Region Degradation Aware SR Network (MRDA)
We use the MRDA to rapidly adapt to the specific complex degradation after several iterations and extract implicit degradation information.
A teacher network MRDA$_T$ is designed to further utilize the degradation information extracted by MLN for SR.
arXiv Detail & Related papers (2022-07-28T09:03:00Z) - Real-World Image Super-Resolution by Exclusionary Dual-Learning [98.36096041099906]
Real-world image super-resolution is a practical image restoration problem that aims to obtain high-quality images from in-the-wild input.
Deep learning-based methods have achieved promising restoration quality on real-world image super-resolution datasets.
We propose Real-World image Super-Resolution by Exclusionary Dual-Learning (RWSR-EDL) to address the feature diversity in perceptual- and L1-based cooperative learning.
arXiv Detail & Related papers (2022-06-06T13:28:15Z) - Mutual Affine Network for Spatially Variant Kernel Estimation in Blind
Image Super-Resolution [130.32026819172256]
Existing blind image super-resolution (SR) methods mostly assume blur kernels are spatially invariant across the whole image.
This paper proposes a mutual affine network (MANet) for spatially variant kernel estimation.
arXiv Detail & Related papers (2021-08-11T16:11:17Z) - SRWarp: Generalized Image Super-Resolution under Arbitrary
Transformation [65.88321755969677]
Deep CNNs have achieved significant successes in image processing and its applications, including single image super-resolution.
Recent approaches extend the scope to real-valued upsampling factors.
We propose the SRWarp framework to further generalize the SR tasks toward an arbitrary image transformation.
arXiv Detail & Related papers (2021-04-21T02:50:41Z) - Unsupervised Degradation Representation Learning for Blind
Super-Resolution [27.788488575616032]
CNN-based super-resolution (SR) methods suffer a severe performance drop when the real degradation is different from their assumption.
We propose an unsupervised degradation representation learning scheme for blind SR without explicit degradation estimation.
Our network achieves state-of-the-art performance for the blind SR task.
arXiv Detail & Related papers (2021-04-01T11:57:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.