Blind Super-Resolution for Remote Sensing Images via Conditional
Stochastic Normalizing Flows
- URL: http://arxiv.org/abs/2210.07751v1
- Date: Fri, 14 Oct 2022 12:37:32 GMT
- Title: Blind Super-Resolution for Remote Sensing Images via Conditional
Stochastic Normalizing Flows
- Authors: Hanlin Wu, Ning Ni, Shan Wang, Libao Zhang
- Abstract summary: We propose a novel blind SR framework based on the normalizing flow (BlindSRSNF) to address the above problems.
BlindSRSNF learns the conditional probability distribution over the high-resolution image space given a low-resolution (LR) image by explicitly optimizing the variational bound on the likelihood.
We show that the proposed algorithm can obtain SR results with excellent visual perception quality on both simulated LR and real-world RSIs.
- Score: 14.882417028542855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Remote sensing images (RSIs) in real scenes may be disturbed by multiple
factors such as optical blur, undersampling, and additional noise, resulting in
complex and diverse degradation models. At present, the mainstream SR
algorithms only consider a single and fixed degradation (such as bicubic
interpolation) and cannot flexibly handle complex degradations in real scenes.
Therefore, designing a super-resolution (SR) model that can cope with various
degradations is gradually attracting the attention of researchers. Some studies
first estimate the degradation kernels and then perform degradation-adaptive SR
but face the problems of estimation error amplification and insufficient
high-frequency details in the results. Although blind SR algorithms based on
generative adversarial networks (GAN) have greatly improved visual quality,
they still suffer from pseudo-texture, mode collapse, and poor training
stability. In this article, we propose a novel blind SR framework based on the
stochastic normalizing flow (BlindSRSNF) to address the above problems.
BlindSRSNF learns the conditional probability distribution over the
high-resolution image space given a low-resolution (LR) image by explicitly
optimizing the variational bound on the likelihood. BlindSRSNF is easy to train
and can generate photo-realistic SR results that outperform GAN-based models.
Besides, we introduce a degradation representation strategy based on
contrastive learning to avoid the error amplification problem caused by the
explicit degradation estimation. Comprehensive experiments show that the
proposed algorithm can obtain SR results with excellent visual perception
quality on both simulated LR and real-world RSIs.
Related papers
- Learning Correction Errors via Frequency-Self Attention for Blind Image
Super-Resolution [1.734165485480267]
We introduce a novel blind SR approach that focuses on Learning Correction Errors (LCE)
Within an SR network, we jointly optimize SR performance by utilizing both the original LR image and the frequency learning of the CLR image.
Our approach effectively addresses the challenges associated with degradation estimation and correction errors, paving the way for more accurate blind image SR.
arXiv Detail & Related papers (2024-03-12T07:58:14Z) - Efficient Test-Time Adaptation for Super-Resolution with Second-Order
Degradation and Reconstruction [62.955327005837475]
Image super-resolution (SR) aims to learn a mapping from low-resolution (LR) to high-resolution (HR) using paired HR-LR training images.
We present an efficient test-time adaptation framework for SR, named SRTTA, which is able to quickly adapt SR models to test domains with different/unknown degradation types.
arXiv Detail & Related papers (2023-10-29T13:58:57Z) - DCS-RISR: Dynamic Channel Splitting for Efficient Real-world Image
Super-Resolution [15.694407977871341]
Real-world image super-resolution (RISR) has received increased focus for improving the quality of SR images under unknown complex degradation.
Existing methods rely on the heavy SR models to enhance low-resolution (LR) images of different degradation levels.
We propose a novel Dynamic Channel Splitting scheme for efficient Real-world Image Super-Resolution, termed DCS-RISR.
arXiv Detail & Related papers (2022-12-15T04:34:57Z) - Meta-Learning based Degradation Representation for Blind
Super-Resolution [54.93926549648434]
We propose a Meta-Learning based Region Degradation Aware SR Network (MRDA)
We use the MRDA to rapidly adapt to the specific complex degradation after several iterations and extract implicit degradation information.
A teacher network MRDA$_T$ is designed to further utilize the degradation information extracted by MLN for SR.
arXiv Detail & Related papers (2022-07-28T09:03:00Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - Hierarchical Conditional Flow: A Unified Framework for Image
Super-Resolution and Image Rescaling [139.25215100378284]
We propose a hierarchical conditional flow (HCFlow) as a unified framework for image SR and image rescaling.
HCFlow learns a mapping between HR and LR image pairs by modelling the distribution of the LR image and the rest high-frequency component simultaneously.
To further enhance the performance, other losses such as perceptual loss and GAN loss are combined with the commonly used negative log-likelihood loss in training.
arXiv Detail & Related papers (2021-08-11T16:11:01Z) - Blind Image Super-Resolution via Contrastive Representation Learning [41.17072720686262]
We design a contrastive representation learning network that focuses on blind SR of images with multi-modal and spatially variant distributions.
We show that the proposed CRL-SR can handle multi-modal and spatially variant degradation effectively under blind settings.
It also outperforms state-of-the-art SR methods qualitatively and quantitatively.
arXiv Detail & Related papers (2021-07-01T19:34:23Z) - Unsupervised Degradation Representation Learning for Blind
Super-Resolution [27.788488575616032]
CNN-based super-resolution (SR) methods suffer a severe performance drop when the real degradation is different from their assumption.
We propose an unsupervised degradation representation learning scheme for blind SR without explicit degradation estimation.
Our network achieves state-of-the-art performance for the blind SR task.
arXiv Detail & Related papers (2021-04-01T11:57:42Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
We propose a novel Frequency Consistent Adaptation (FCA) that ensures the frequency domain consistency when applying Super-Resolution (SR) methods to the real scene.
We estimate degradation kernels from unsupervised images and generate the corresponding Low-Resolution (LR) images.
Based on the domain-consistent LR-HR pairs, we train easy-implemented Convolutional Neural Network (CNN) SR models.
arXiv Detail & Related papers (2020-12-18T08:25:39Z) - SRFlow: Learning the Super-Resolution Space with Normalizing Flow [176.07982398988747]
Super-resolution is an ill-posed problem, since it allows for multiple predictions for a given low-resolution image.
We propose SRFlow: a normalizing flow based super-resolution method capable of learning the conditional distribution of the output.
Our model is trained in a principled manner using a single loss, namely the negative log-likelihood.
arXiv Detail & Related papers (2020-06-25T06:34:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.