Flow-based sampling for multimodal and extended-mode distributions in lattice field theory
- URL: http://arxiv.org/abs/2107.00734v2
- Date: Sat, 15 Feb 2025 00:34:46 GMT
- Title: Flow-based sampling for multimodal and extended-mode distributions in lattice field theory
- Authors: Daniel C. Hackett, Chung-Chun Hsieh, Sahil Pontula, Michael S. Albergo, Denis Boyda, Jiunn-Wei Chen, Kai-Feng Chen, Kyle Cranmer, Gurtej Kanwar, Phiala E. Shanahan,
- Abstract summary: We present a set of training- and architecture-based methods to construct flow models for targets with multiple separated modes.<n>We demonstrate the application of these methods to modeling two-dimensional real and complex scalar field theories.
- Score: 3.9492325196180715
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent results have demonstrated that samplers constructed with flow-based generative models are a promising new approach for configuration generation in lattice field theory. In this paper, we present a set of training- and architecture-based methods to construct flow models for targets with multiple separated modes (i.e.~vacua) as well as targets with extended/continuous modes. We demonstrate the application of these methods to modeling two-dimensional real and complex scalar field theories in their symmetry-broken phases. In this context we investigate different flow-based sampling algorithms, including a composite sampling algorithm where flow-based proposals are occasionally augmented by applying updates using traditional algorithms like HMC.
Related papers
- Geometric Regularity in Deterministic Sampling of Diffusion-based Generative Models [39.94246633953425]
We reveal a striking geometric regularity in the deterministic sampling dynamics.<n>All trajectories exhibit an almost identical ''boomerang'' shape, regardless of the model architecture, applied conditions, or generated content.<n>We propose a dynamic programming-based scheme to better align the sampling time schedule with the underlying trajectory structure.
arXiv Detail & Related papers (2025-06-11T21:09:09Z) - ParallelFlow: Parallelizing Linear Transformers via Flow Discretization [4.272515397452792]
We present a theoretical framework for analyzing linear attention models through matrix-valued state space models (SSMs)<n>Our approach, Parallel Flows, provides a perspective that systematically decouples temporal dynamics from implementation constraints.<n>As a concrete application, we analyze DeltaNet in a generalized low-rank setting motivated by recent theoretical advances.
arXiv Detail & Related papers (2025-04-01T07:34:07Z) - Random Walks with Tweedie: A Unified Framework for Diffusion Models [11.161487364062667]
We present a simple template for designing generative diffusion model algorithms based on an interpretation of diffusion sampling as a sequence of random walks.
We show that several existing diffusion models correspond to particular choices within this template and demonstrate that other, more straightforward algorithmic choices lead to effective diffusion models.
arXiv Detail & Related papers (2024-11-27T19:13:20Z) - Flow map matching with stochastic interpolants: A mathematical framework for consistency models [15.520853806024943]
Flow Map Matching is a principled framework for learning the two-time flow map of an underlying generative model.<n>We show that FMM unifies and extends a broad class of existing approaches for fast sampling.
arXiv Detail & Related papers (2024-06-11T17:41:26Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Improved off-policy training of diffusion samplers [93.66433483772055]
We study the problem of training diffusion models to sample from a distribution with an unnormalized density or energy function.
We benchmark several diffusion-structured inference methods, including simulation-based variational approaches and off-policy methods.
Our results shed light on the relative advantages of existing algorithms while bringing into question some claims from past work.
arXiv Detail & Related papers (2024-02-07T18:51:49Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC [102.64648158034568]
diffusion models have quickly become the prevailing approach to generative modeling in many domains.
We propose an energy-based parameterization of diffusion models which enables the use of new compositional operators.
We find these samplers lead to notable improvements in compositional generation across a wide set of problems.
arXiv Detail & Related papers (2023-02-22T18:48:46Z) - Aspects of scaling and scalability for flow-based sampling of lattice
QCD [137.23107300589385]
Recent applications of machine-learned normalizing flows to sampling in lattice field theory suggest that such methods may be able to mitigate critical slowing down and topological freezing.
It remains to be determined whether they can be applied to state-of-the-art lattice quantum chromodynamics calculations.
arXiv Detail & Related papers (2022-11-14T17:07:37Z) - Gauge-equivariant flow models for sampling in lattice field theories
with pseudofermions [51.52945471576731]
This work presents gauge-equivariant architectures for flow-based sampling in fermionic lattice field theories using pseudofermions as estimators for the fermionic determinant.
This is the default approach in state-of-the-art lattice field theory calculations, making this development critical to the practical application of flow models to theories such as QCD.
arXiv Detail & Related papers (2022-07-18T21:13:34Z) - Flow-based sampling in the lattice Schwinger model at criticality [54.48885403692739]
Flow-based algorithms may provide efficient sampling of field distributions for lattice field theory applications.
We provide a numerical demonstration of robust flow-based sampling in the Schwinger model at the critical value of the fermion mass.
arXiv Detail & Related papers (2022-02-23T19:00:00Z) - Stochastic normalizing flows as non-equilibrium transformations [62.997667081978825]
We show that normalizing flows provide a route to sample lattice field theories more efficiently than conventional MonteCarlo simulations.
We lay out a strategy to optimize the efficiency of this extended class of generative models and present examples of applications.
arXiv Detail & Related papers (2022-01-21T19:00:18Z) - Towards extraction of orthogonal and parsimonious non-linear modes from
turbulent flows [0.0]
We propose a deep probabilistic-neural-network architecture for learning a minimal and near-orthogonal set of non-linear modes.
Our approach is based on $beta$-variational autoencoders ($beta$-VAEs) and convolutional neural networks (CNNs)
arXiv Detail & Related papers (2021-09-03T13:38:51Z) - Flow-based sampling for fermionic lattice field theories [8.46509435333566]
This work develops approaches that enable flow-based sampling of theories with dynamical fermions.
As a practical demonstration, these methods are applied to the sampling of field configurations for a two-dimensional theory of massless staggered fermions.
arXiv Detail & Related papers (2021-06-10T17:32:47Z) - Equivariant flow-based sampling for lattice gauge theory [10.163463390007617]
We demonstrate the application of this framework to U(1) gauge theory in two spacetime dimensions.
We find that near critical points in parameter space the approach is orders of magnitude more efficient at sampling topological quantities than more traditional sampling procedures.
arXiv Detail & Related papers (2020-03-13T17:54:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.