Flow map matching with stochastic interpolants: A mathematical framework for consistency models
- URL: http://arxiv.org/abs/2406.07507v2
- Date: Tue, 03 Jun 2025 00:03:07 GMT
- Title: Flow map matching with stochastic interpolants: A mathematical framework for consistency models
- Authors: Nicholas M. Boffi, Michael S. Albergo, Eric Vanden-Eijnden,
- Abstract summary: Flow Map Matching is a principled framework for learning the two-time flow map of an underlying generative model.<n>We show that FMM unifies and extends a broad class of existing approaches for fast sampling.
- Score: 15.520853806024943
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative models based on dynamical equations such as flows and diffusions offer exceptional sample quality, but require computationally expensive numerical integration during inference. The advent of consistency models has enabled efficient one-step or few-step generation, yet despite their practical success, a systematic understanding of their design has been hindered by the lack of a comprehensive theoretical framework. Here we introduce Flow Map Matching (FMM), a principled framework for learning the two-time flow map of an underlying dynamical generative model, thereby providing this missing mathematical foundation. Leveraging stochastic interpolants, we propose training objectives both for distillation from a pre-trained velocity field and for direct training of a flow map over an interpolant or a forward diffusion process. Theoretically, we show that FMM unifies and extends a broad class of existing approaches for fast sampling, including consistency models, consistency trajectory models, and progressive distillation. Experiments on CIFAR-10 and ImageNet-32 highlight that our approach can achieve sample quality comparable to flow matching while reducing generation time by a factor of 10-20.
Related papers
- Align Your Flow: Scaling Continuous-Time Flow Map Distillation [63.927438959502226]
Flow maps connect any two noise levels in a single step and remain effective across all step counts.<n>We extensively validate our flow map models, called Align Your Flow, on challenging image generation benchmarks.<n>We show text-to-image flow map models that outperform all existing non-adversarially trained few-step samplers in text-conditioned synthesis.
arXiv Detail & Related papers (2025-06-17T15:06:07Z) - Contrastive Flow Matching [61.60002028726023]
We introduce Contrastive Flow Matching, an extension to the flow matching objective that explicitly enforces uniqueness across all conditional flows.<n>Our approach adds a contrastive objective that maximizes dissimilarities between predicted flows from arbitrary sample pairs.<n>We find that training models with Contrastive Flow Matching (1) improves training speed by a factor of up to 9x, (2) requires up to 5x fewer de-noising steps and (3) lowers FID by up to 8.9 compared to training the same models with flow matching.
arXiv Detail & Related papers (2025-06-05T17:59:58Z) - How to build a consistency model: Learning flow maps via self-distillation [15.520853806024943]
We present a systematic approach for learning flow maps associated with flow and diffusion models.<n>We exploit a relationship between the velocity field underlying a continuous-time flow and the instantaneous rate of change of the flow map.<n>We show how to convert existing distillation schemes into direct training algorithms via self-distillation.
arXiv Detail & Related papers (2025-05-24T18:50:50Z) - Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product of Experts [64.34482582690927]
We provide an efficient and principled method for sampling from a sequence of annealed, geometric-averaged, or product distributions derived from pretrained score-based models.
We propose Sequential Monte Carlo (SMC) resampling algorithms that leverage inference-time scaling to improve sampling quality.
arXiv Detail & Related papers (2025-03-04T17:46:51Z) - Self-Corrected Flow Distillation for Consistent One-Step and Few-Step Text-to-Image Generation [3.8959351616076745]
Flow matching has emerged as a promising framework for training generative models.<n>We introduce a self-corrected flow distillation method that integrates consistency models and adversarial training.<n>This work is a pioneer in achieving consistent generation quality in both few-step and one-step sampling.
arXiv Detail & Related papers (2024-12-22T07:48:49Z) - Local Flow Matching Generative Models [19.859984725284896]
Local Flow Matching is a computational framework for density estimation based on flow-based generative models.
$textttLFM$ employs a simulation-free scheme and incrementally learns a sequence of Flow Matching sub-models.
We demonstrate the improved training efficiency and competitive generative performance of $textttLFM$ compared to FM.
arXiv Detail & Related papers (2024-10-03T14:53:10Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Towards a mathematical theory for consistency training in diffusion
models [17.632123036281957]
This paper takes a first step towards establishing theoretical underpinnings for consistency models.
We demonstrate that, in order to generate samples within $varepsilon$ proximity to the target in distribution, it suffices for the number of steps in consistency learning to exceed the order of $d5/2/varepsilon$, with the data dimension.
Our theory offers rigorous insights into the validity and efficacy of consistency models, illuminating their utility in downstream inference tasks.
arXiv Detail & Related papers (2024-02-12T17:07:02Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
We show that Guided Flows significantly improves the sample quality in conditional image generation and zero-shot text synthesis-to-speech.
Notably, we are first to apply flow models for plan generation in the offline reinforcement learning setting ax speedup in compared to diffusion models.
arXiv Detail & Related papers (2023-11-22T15:07:59Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Stochastic Interpolants: A Unifying Framework for Flows and Diffusions [16.95541777254722]
A class of generative models that unifies flow-based and diffusion-based methods is introduced.
These models extend the framework proposed in Albergo & VandenEijnden (2023), enabling the use of a broad class of continuous-time processes called stochastic interpolants'
These interpolants are built by combining data from the two prescribed densities with an additional latent variable that shapes the bridge in a flexible way.
arXiv Detail & Related papers (2023-03-15T17:43:42Z) - Minimizing Trajectory Curvature of ODE-based Generative Models [45.89620603363946]
Recent generative models, such as diffusion models, rectified flows, and flow matching, define a generative process as a time reversal of a fixed forward process.
We present an efficient method of training the forward process to minimize the curvature of generative trajectories without any ODE/SDE simulation.
arXiv Detail & Related papers (2023-01-27T21:52:03Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Fast Sampling of Diffusion Models via Operator Learning [74.37531458470086]
We use neural operators, an efficient method to solve the probability flow differential equations, to accelerate the sampling process of diffusion models.
Compared to other fast sampling methods that have a sequential nature, we are the first to propose a parallel decoding method.
We show our method achieves state-of-the-art FID of 3.78 for CIFAR-10 and 7.83 for ImageNet-64 in the one-model-evaluation setting.
arXiv Detail & Related papers (2022-11-24T07:30:27Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
We take a two-step approach by first modeling the probability distribution and then sampling from that model.
We show that these models can approximate a large class of densities concisely using few evaluations, and present a simple algorithm to effectively sample from these models.
arXiv Detail & Related papers (2021-10-20T12:25:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.