Exact solution of a non-stationary cavity with one intermode interaction
- URL: http://arxiv.org/abs/2107.00785v1
- Date: Fri, 2 Jul 2021 01:13:36 GMT
- Title: Exact solution of a non-stationary cavity with one intermode interaction
- Authors: I. Ramos-Prieto, R. Rom\'an-Ancheyta, J. R\'ecamier and H. M.
Moya-Cessa
- Abstract summary: A non-stationary one-dimensional cavity can be described by the time-dependent and multi-mode effective Hamiltonian of the so-called dynamical Casimir effect.
We show that for any set of functions parameterizing the effective Hamiltonian, the corresponding time-dependent Schr"odinger equation admits an exact solution when the cavity has one intermode interaction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A non-stationary one-dimensional cavity can be described by the
time-dependent and multi-mode effective Hamiltonian of the so-called dynamical
Casimir effect. Due to the non-adiabatic boundary conditions imposed in one of
the cavity mirrors, this effect predicts the generation of real photons out of
vacuum fluctuations of the electromagnetic field. Such photon generation
strongly depends on the number of modes in the cavity and their intermode
couplings. Here, by using an algebraic approach, we show that for any set of
functions parameterizing the effective Hamiltonian, the corresponding
time-dependent Schr\"odinger equation admits an exact solution when the cavity
has one intermode interaction. With the exact time evolution operator, written
as a product of eleven exponentials, we obtain the average photon number in
each mode, a few relevant observables and some statistical properties for the
evolved vacuum state.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Temporal factorization of a non-stationary electromagnetic cavity field [0.0]
We show that it is possible to factorize the entire temporal dependency and write its formal solution.
We prove in detail that the photon production is proportional to the Planck factor involving a velocity-dependent effective temperature.
arXiv Detail & Related papers (2022-12-29T12:36:27Z) - Photon generation and entanglement in a double superconducting cavity [105.54048699217668]
We study the dynamical Casimir effect in a double superconducting cavity in a quantum electrodynamics architecture.
We study the creation of photons when the walls oscillate harmonically with a small amplitude.
arXiv Detail & Related papers (2022-07-18T16:43:47Z) - Generation of photons from vacuum in cavity via time-modulation of a
qubit invisible to the field [0.0]
We find that tripartite entangled states with a small number of photons can be generated from the system ground state under resonant modulations.
We attest our approximate analytic results by numeric simulations and show that photon generation from vacuum persists in the presence of common dissipation mechanisms.
arXiv Detail & Related papers (2022-06-13T00:24:57Z) - A simple way to incorporate loss when modelling multimode entangled
state generation [0.0]
We show that the light generated via spontaneous four-wave mixing or parametric down conversion in multiple, coupled, lossy cavities is a multimode squeezed thermal state.
Requiring this state to be the solution of the Lindblad master equation results in a set of coupled first-order differential equations.
arXiv Detail & Related papers (2021-12-22T17:14:27Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - A quantum optics approach to photoinduced electron transfer in cavities [0.0]
We study a simple model for photoinduced electron transfer reactions for the case of many donor-acceptor pairs.
We find that under proper resonance conditions, and in the presence of an incoherent drive, reaction rates can be enhanced by the cavity.
arXiv Detail & Related papers (2020-11-12T18:59:44Z) - Dissipative dynamical Casimir effect in terms of the complex spectral
analysis in the symplectic-Floquet space [2.7539573422730204]
We study the dynamical Casimir effect of the optomechanical cavity interacting with one-dimensional photonic crystal.
The quantum vacuum fluctuation of the intra-cavity mode is parametrically amplified by a periodic motion of the mirror boundary.
We have found that the nonlocal stationary eigenmode appears when the mixing between the cavity mode and the photonic band is caused by the indirect virtual transition.
arXiv Detail & Related papers (2020-05-31T21:42:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.