Online Matching in Sparse Random Graphs: Non-Asymptotic Performances of
Greedy Algorithm
- URL: http://arxiv.org/abs/2107.00995v1
- Date: Fri, 2 Jul 2021 12:18:19 GMT
- Title: Online Matching in Sparse Random Graphs: Non-Asymptotic Performances of
Greedy Algorithm
- Authors: Nathan Noiry, Flore Sentenac, Vianney Perchet
- Abstract summary: We estimate the competitive ratio of the simplest algorithm, GREEDY, by approximating some relevant discrete processes by their continuous counterparts.
We prove that, quite surprisingly, GREEDY can have better performance guarantees than RANKING, another celebrated algorithm for online matching.
- Score: 20.582965700659788
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by sequential budgeted allocation problems, we investigate online
matching problems where connections between vertices are not i.i.d., but they
have fixed degree distributions -- the so-called configuration model. We
estimate the competitive ratio of the simplest algorithm, GREEDY, by
approximating some relevant stochastic discrete processes by their continuous
counterparts, that are solutions of an explicit system of partial differential
equations. This technique gives precise bounds on the estimation errors, with
arbitrarily high probability as the problem size increases. In particular, it
allows the formal comparison between different configuration models. We also
prove that, quite surprisingly, GREEDY can have better performance guarantees
than RANKING, another celebrated algorithm for online matching that usually
outperforms the former.
Related papers
- Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
We present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
In particular, we present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
arXiv Detail & Related papers (2023-12-19T13:17:43Z) - Efficient distributed representations with linear-time attention scores normalization [3.8673630752805437]
We propose a linear-time approximation of the attention score normalization constants for embedding vectors with bounded norms.
The accuracy of our estimation formula surpasses competing kernel methods by even orders of magnitude.
The proposed algorithm is highly interpretable and easily adapted to an arbitrary embedding problem.
arXiv Detail & Related papers (2023-03-30T15:48:26Z) - Optimal Clustering with Bandit Feedback [57.672609011609886]
This paper considers the problem of online clustering with bandit feedback.
It includes a novel stopping rule for sequential testing that circumvents the need to solve any NP-hard weighted clustering problem as its subroutines.
We show through extensive simulations on synthetic and real-world datasets that BOC's performance matches the lower boundally, and significantly outperforms a non-adaptive baseline algorithm.
arXiv Detail & Related papers (2022-02-09T06:05:05Z) - Reinforcement Learning Based Query Vertex Ordering Model for Subgraph
Matching [58.39970828272366]
Subgraph matching algorithms enumerate all is embeddings of a query graph in a data graph G.
matching order plays a critical role in time efficiency of these backtracking based subgraph matching algorithms.
In this paper, for the first time we apply the Reinforcement Learning (RL) and Graph Neural Networks (GNNs) techniques to generate the high-quality matching order for subgraph matching algorithms.
arXiv Detail & Related papers (2022-01-25T00:10:03Z) - Deep Probabilistic Graph Matching [72.6690550634166]
We propose a deep learning-based graph matching framework that works for the original QAP without compromising on the matching constraints.
The proposed method is evaluated on three popularly tested benchmarks (Pascal VOC, Willow Object and SPair-71k) and it outperforms all previous state-of-the-arts on all benchmarks.
arXiv Detail & Related papers (2022-01-05T13:37:27Z) - Simple Stochastic and Online Gradient DescentAlgorithms for Pairwise
Learning [65.54757265434465]
Pairwise learning refers to learning tasks where the loss function depends on a pair instances.
Online descent (OGD) is a popular approach to handle streaming data in pairwise learning.
In this paper, we propose simple and online descent to methods for pairwise learning.
arXiv Detail & Related papers (2021-11-23T18:10:48Z) - Kernel Clustering with Sigmoid-based Regularization for Efficient
Segmentation of Sequential Data [3.8326963933937885]
segmentation aims at partitioning a data sequence into several non-overlapping segments that may have nonlinear and complex structures.
A popular Kernel for optimally solving this problem is dynamic programming (DP), which has quadratic computation and memory requirements.
Although many algorithms have been proposed to approximate the optimal segmentation, they have no guarantee on the quality of their solutions.
arXiv Detail & Related papers (2021-06-22T04:32:21Z) - Efficient Permutation Discovery in Causal DAGs [9.22466799504763]
We introduce an efficient algorithm for finding sparse permutations of a directed acyclic graph.
We show that our method with depth $w$ runs in $O(pw+3)$ time.
We also compare our algorithm to provably consistent causal structure learning algorithms, such as the PC algorithm, GES, and GSP, and show that our method achieves comparable performance with a shorter runtime.
arXiv Detail & Related papers (2020-11-06T21:56:41Z) - Learning to Accelerate Heuristic Searching for Large-Scale Maximum
Weighted b-Matching Problems in Online Advertising [51.97494906131859]
Bipartite b-matching is fundamental in algorithm design, and has been widely applied into economic markets, labor markets, etc.
Existing exact and approximate algorithms usually fail in such settings due to either requiring intolerable running time or too much computation resource.
We propose textttNeuSearcher which leverages the knowledge learned from previously instances to solve new problem instances.
arXiv Detail & Related papers (2020-05-09T02:48:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.