Communication-Efficient Stochastic Distributed Learning
- URL: http://arxiv.org/abs/2501.13516v1
- Date: Thu, 23 Jan 2025 10:05:23 GMT
- Title: Communication-Efficient Stochastic Distributed Learning
- Authors: Xiaoxing Ren, Nicola Bastianello, Karl H. Johansson, Thomas Parisini,
- Abstract summary: We address distributed learning problems, both non and convex, undirected networks.
In particular, we design a novel based on the distributed Alternating Method of Multipliers (MM) to address the challenges of high communication costs.
- Score: 3.2923780772605595
- License:
- Abstract: We address distributed learning problems, both nonconvex and convex, over undirected networks. In particular, we design a novel algorithm based on the distributed Alternating Direction Method of Multipliers (ADMM) to address the challenges of high communication costs, and large datasets. Our design tackles these challenges i) by enabling the agents to perform multiple local training steps between each round of communications; and ii) by allowing the agents to employ stochastic gradients while carrying out local computations. We show that the proposed algorithm converges to a neighborhood of a stationary point, for nonconvex problems, and of an optimal point, for convex problems. We also propose a variant of the algorithm to incorporate variance reduction thus achieving exact convergence. We show that the resulting algorithm indeed converges to a stationary (or optimal) point, and moreover that local training accelerates convergence. We thoroughly compare the proposed algorithms with the state of the art, both theoretically and through numerical results.
Related papers
- Stabilized Proximal-Point Methods for Federated Optimization [20.30761752651984]
Best-known communication complexity among non-accelerated algorithms is achieved by DANE, a distributed proximal-point algorithm.
Inspired by the hybrid-projection proximal-point method, we propose a novel distributed algorithm S-DANE.
We show that S-DANE achieves the best-known communication complexity while still enjoying good local computation efficiency as S-DANE.
arXiv Detail & Related papers (2024-07-09T17:56:29Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Composite federated learning with heterogeneous data [11.40641907024708]
We propose a novel algorithm for solving the composite Federated Learning (FL) problem.
This algorithm manages non-smooth regularization by strategically decoupling the proximal operator and communication, and addresses client drift without any assumptions about data similarity.
We prove that our algorithm converges linearly to a neighborhood of the optimal solution and demonstrate the superiority of our algorithm over state-of-the-art methods in numerical experiments.
arXiv Detail & Related papers (2023-09-04T20:22:57Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network [55.56019538079826]
Bilevel optimization has been applied to a wide variety of machine learning models.
Most existing algorithms restrict their single-machine setting so that they are incapable of handling distributed data.
We develop novel decentralized bilevel optimization algorithms based on a gradient tracking communication mechanism and two different gradients.
arXiv Detail & Related papers (2022-06-30T05:29:52Z) - On Accelerating Distributed Convex Optimizations [0.0]
This paper studies a distributed multi-agent convex optimization problem.
We show that the proposed algorithm converges linearly with an improved rate of convergence than the traditional and adaptive gradient-descent methods.
We demonstrate our algorithm's superior performance compared to prominent distributed algorithms for solving real logistic regression problems.
arXiv Detail & Related papers (2021-08-19T13:19:54Z) - Asynchronous Distributed Reinforcement Learning for LQR Control via Zeroth-Order Block Coordinate Descent [7.6860514640178]
We propose a novel zeroth-order optimization algorithm for distributed reinforcement learning.
It allows each agent to estimate its local gradient by cost evaluation independently, without use of any consensus protocol.
arXiv Detail & Related papers (2021-07-26T18:11:07Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Distributed Optimization, Averaging via ADMM, and Network Topology [0.0]
We study the connection between network topology and convergence rates for different algorithms on a real world problem of sensor localization.
We also show interesting connections between ADMM and lifted Markov chains besides providing an explicitly characterization of its convergence.
arXiv Detail & Related papers (2020-09-05T21:44:39Z) - Channel Assignment in Uplink Wireless Communication using Machine
Learning Approach [54.012791474906514]
This letter investigates a channel assignment problem in uplink wireless communication systems.
Our goal is to maximize the sum rate of all users subject to integer channel assignment constraints.
Due to high computational complexity, machine learning approaches are employed to obtain computational efficient solutions.
arXiv Detail & Related papers (2020-01-12T15:54:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.