論文の概要: MegazordNet: combining statistical and machine learning standpoints for
time series forecasting
- arxiv url: http://arxiv.org/abs/2107.01017v1
- Date: Wed, 23 Jun 2021 15:06:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-11 13:00:20.004976
- Title: MegazordNet: combining statistical and machine learning standpoints for
time series forecasting
- Title(参考訳): MegazordNet:時系列予測のための統計と機械学習の視点を組み合わせる
- Authors: Angelo Garangau Menezes and Saulo Martiello Mastelini
- Abstract要約: MegazordNetは、時系列予測のための構造化ディープラーニングモデルと組み合わせて、金融シリーズ内の統計的特徴を探求するフレームワークである。
我々は,S&P500株の終値を予測する手法の評価を行った。
- 参考スコア(独自算出の注目度): 0.4061135251278187
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Forecasting financial time series is considered to be a difficult task due to
the chaotic feature of the series. Statistical approaches have shown solid
results in some specific problems such as predicting market direction and
single-price of stocks; however, with the recent advances in deep learning and
big data techniques, new promising options have arises to tackle financial time
series forecasting. Moreover, recent literature has shown that employing a
combination of statistics and machine learning may improve accuracy in the
forecasts in comparison to single solutions. Taking into consideration the
mentioned aspects, in this work, we proposed the MegazordNet, a framework that
explores statistical features within a financial series combined with a
structured deep learning model for time series forecasting. We evaluated our
approach predicting the closing price of stocks in the S&P 500 using different
metrics, and we were able to beat single statistical and machine learning
methods.
- Abstract(参考訳): 金融時系列の予測は、シリーズのカオス的特徴のために難しい課題であると考えられている。
統計学的アプローチは、市場方向の予測や株価の単価など、いくつかの特定の問題において確固たる結果を示しているが、近年のディープラーニングとビッグデータ技術の進歩により、金融時系列予測に新たな有望な選択肢が生まれている。
さらに,近年の文献では,統計と機械学習を組み合わせることで,単一解と比較して予測精度が向上する可能性が示唆されている。
そこで本研究では,時系列予測のための構造化深層学習モデルと組み合わせて,金融時系列内の統計的特徴を探索するフレームワークであるMegazordNetを提案する。
我々は、s&p500種株価の終値予測手法を異なる指標を用いて評価し、単一統計および機械学習手法を上回った。
関連論文リスト
- BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
本稿では,時系列予測や資産価格の急上昇の予測に特化して,新たな大規模言語モデル(LLM)アーキテクチャであるBreakGPTを紹介する。
我々は、最小限のトレーニングで財務予測を行うための有望なソリューションとしてBreakGPTを紹介し、局所的およびグローバルな時間的依存関係をキャプチャする強力な競合相手として紹介する。
論文 参考訳(メタデータ) (2024-11-09T05:40:32Z) - Large Language Models for Financial Aid in Financial Time-series Forecasting [0.4218593777811082]
金融支援の時系列予測は、限られた歴史的データセットと高次元財務情報のために困難である。
我々は、従来のアプローチよりも優れた性能を示すために、事前訓練されたLPM(GPT-2をバックボーンとする)、トランスフォーマー、線形モデルなど、最先端の時系列モデルを用いている。
論文 参考訳(メタデータ) (2024-10-24T12:41:47Z) - Rating Multi-Modal Time-Series Forecasting Models (MM-TSFM) for Robustness Through a Causal Lens [10.103561529332184]
ノイズや不正なデータによる不正確さが誤った予測につながるような,マルチモーダルな時系列予測に重点を置いている。
本稿では,マルチモーダル時系列予測モデルのロバスト性を評価するための評価手法を提案する。
論文 参考訳(メタデータ) (2024-06-12T17:39:16Z) - Enhancing Mean-Reverting Time Series Prediction with Gaussian Processes:
Functional and Augmented Data Structures in Financial Forecasting [0.0]
本稿では,ガウス過程(GP)を基礎構造を持つ平均回帰時系列の予測に適用する。
GPは、平均予測だけでなく、将来の軌道上の確率分布全体を予測する可能性を提供する。
これは、不正なボラティリティ評価が資本損失につながる場合、正確な予測だけでは十分でない金融状況において特に有益である。
論文 参考訳(メタデータ) (2024-02-23T06:09:45Z) - Loss Shaping Constraints for Long-Term Time Series Forecasting [79.3533114027664]
本稿では,長期時系列予測のための制約付き学習手法を提案する。
提案手法は, 予測ウィンドウ上でエラーを発生させながら, 時系列ベンチマークにおける競合平均性能を示すことを示すための, 実用的なプリマル・デュアルアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-14T18:20:44Z) - Financial Time-Series Forecasting: Towards Synergizing Performance And
Interpretability Within a Hybrid Machine Learning Approach [2.0213537170294793]
本稿では、ハイブリッド機械学習アルゴリズムの比較研究を行い、モデル解釈可能性の向上に活用する。
本稿では,金融時系列予測において出現する潜伏関係や複雑なパターンの発掘を目的とした,分解,自己相関関数,指数的三重予測など,時系列統計の事前処理技術に関する体系的な概要を述べる。
論文 参考訳(メタデータ) (2023-12-31T16:38:32Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Ensembles of Randomized NNs for Pattern-based Time Series Forecasting [0.0]
本稿では,ランダム化ニューラルネットワークに基づくアンサンブル予測手法を提案する。
時系列のパターンに基づく表現は、複数の季節の時系列を予測するのに適している。
4つの実世界の予測問題に対するケーススタディにより,提案手法の有効性と性能が検証された。
論文 参考訳(メタデータ) (2021-07-08T20:13:50Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
ディープラーニングモデルは、金融時系列データの予測問題など、さまざまな領域から来る多くの問題において、大幅なパフォーマンス改善をもたらしている。
近年,制限順序書の時系列予測の効率的かつ高性能なモデルとして,時間的注意強化バイリニアネットワークが提案されている。
本稿では,モデルの低ランクテンソル近似を提案し,トレーニング可能なパラメータの数をさらに削減し,その速度を向上する。
論文 参考訳(メタデータ) (2021-07-05T10:15:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。