Imaging dynamics beneath turbid media via parallelized single-photon
detection
- URL: http://arxiv.org/abs/2107.01422v1
- Date: Sat, 3 Jul 2021 12:32:21 GMT
- Title: Imaging dynamics beneath turbid media via parallelized single-photon
detection
- Authors: Shiqi Xu, Xi Yang, Wenhui Liu, Joakim Jonsson, Ruobing Qian, Pavan
Chandra Konda, Kevin C. Zhou, Qionghai Dai, Haoqian Wang, Edouard Berrocal,
Roarke Horstmeyer
- Abstract summary: We take advantage of a single-photon avalanche diode (SPAD) array camera, with over one thousand detectors, to simultaneously detect speckle fluctuations at the single-photon level.
We then apply a deep neural network to convert the acquired single-photon measurements into video of scattering dynamics beneath rapidly decorrelating liquid tissue phantoms.
- Score: 32.148006108515716
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Noninvasive optical imaging through dynamic scattering media has numerous
important biomedical applications but still remains a challenging task. While
standard methods aim to form images based upon optical absorption or
fluorescent emission, it is also well-established that the temporal correlation
of scattered coherent light diffuses through tissue much like optical
intensity. Few works to date, however, have aimed to experimentally measure and
process such data to demonstrate deep-tissue imaging of decorrelation dynamics.
In this work, we take advantage of a single-photon avalanche diode (SPAD) array
camera, with over one thousand detectors, to simultaneously detect speckle
fluctuations at the single-photon level from 12 different phantom tissue
surface locations delivered via a customized fiber bundle array. We then apply
a deep neural network to convert the acquired single-photon measurements into
video of scattering dynamics beneath rapidly decorrelating liquid tissue
phantoms. We demonstrate the ability to record video of dynamic events
occurring 5-8 mm beneath a decorrelating tissue phantom with mm-scale
resolution and at a 2.5-10 Hz frame rate.
Related papers
- Spatial super-resolution in nanosensing with blinking emitters [79.16635054977068]
We propose a method of spatial resolution enhancement in metrology with blinking fluorescent nanosensors.
We believe that blinking fluorescent sensing agents being complemented with the developed image analysis technique could be utilized routinely in the life science sector.
arXiv Detail & Related papers (2024-02-27T10:38:05Z) - FiND: Few-shot three-dimensional image-free confocal focusing on
point-like emitters [0.2094057281590807]
We introduce FiND, an imaging-free, non-trained 3D focusing framework for confocal microscopy.
FiND achieves focusing for signal-to-noise ratios down to 1, with a few-shot operation for signal-to-noise ratios above 5.
Our results show that FiND is a useful focusing framework for the scalable analysis of point-like emitters in biology, material science, and quantum optics.
arXiv Detail & Related papers (2023-11-11T04:41:26Z) - Shaping Single Photons through Multimode Optical Fibers using Mechanical
Perturbations [55.41644538483948]
We show an all-fiber approach for controlling the shape of single photons and the spatial correlations between entangled photon pairs.
We optimize these perturbations to localize the spatial distribution of a single photon or the spatial correlations of photon pairs in a single spot.
arXiv Detail & Related papers (2023-06-04T07:33:39Z) - Diffusion Probabilistic Model Made Slim [128.2227518929644]
We introduce a customized design for slim diffusion probabilistic models (DPM) for light-weight image synthesis.
We achieve 8-18x computational complexity reduction as compared to the latent diffusion models on a series of conditional and unconditional image generation tasks.
arXiv Detail & Related papers (2022-11-27T16:27:28Z) - DEEP$^2$: Deep Learning Powered De-scattering with Excitation Patterning [3.637479539861615]
'De-scattering with Excitation Patterning or DEEP' is a widefield alternative to point-scanning.
We present DEEP$2$, a deep learning based model, that can de-scatter images from just tens of patterned excitations instead of hundreds.
We demonstrate our method in multiple numerical and physical experiments including in-vivo cortical vasculature imaging up to four scattering lengths deep, in alive mice.
arXiv Detail & Related papers (2022-10-19T21:12:09Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Transient motion classification through turbid volumes via parallelized
single-photon detection and deep contrastive embedding [12.806431481376787]
We propose a technique termed Classifying Rapid decorrelation Events via Parallelized single photon dEtection (CREPE).
It can probe and classify different decorrelating movements hidden underneath turbid volume with high sensitivity using parallelized speckle from a $32times32 pixel SPAD array.
This has the potential to be applied to monitor normally deep tissue motion patterns, for example identifying abnormal cerebral blood flow events.
arXiv Detail & Related papers (2022-04-04T14:27:36Z) - Mid-Infrared Microscopy via Position Correlations of Undetected Photons [0.0]
Quantum imaging with undetected photons (QIUP) has recently emerged as a new powerful imaging tool.
We implement and examine theoretically and numerically the complementary scenario - utilising the tight position correlations formed within photon pair at birth.
We experimentally show resolutions below 10 $mu$m at a sensing wavelength of 3.7 $mu$m and demonstrate the viability of the technique for the life sciences.
arXiv Detail & Related papers (2021-06-11T14:44:43Z) - Tunable Anderson Localization of Dark States [146.2730735143614]
We experimentally study Anderson localization in a superconducting waveguide quantum electrodynamics system.
We observe an exponential suppression of the transmission coefficient in the vicinity of its subradiant dark modes.
The experiment opens the door to the study of various localization phenomena on a new platform.
arXiv Detail & Related papers (2021-05-25T07:52:52Z) - Passive Inter-Photon Imaging [18.739224941453983]
Digital camera pixels measure image intensities by converting incident light energy into an analog electrical current, and then digitizing it into a fixed-width binary representation.
This direct measurement method suffers from limited dynamic range and poor performance under extreme illumination.
We propose a novel intensity cue based on measuring inter-photon timing, defined as the time delay between detection of successive photons.
arXiv Detail & Related papers (2021-03-31T18:44:52Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.