Quantitative phase gradient microscopy with spatially entangled photons
- URL: http://arxiv.org/abs/2406.06377v3
- Date: Wed, 23 Jul 2025 00:41:23 GMT
- Title: Quantitative phase gradient microscopy with spatially entangled photons
- Authors: Yingwen Zhang, Paul-Antoine Moreau, Duncan England, Ebrahim Karimi, Benjamin Sussman,
- Abstract summary: We present an entanglement-based quantitative phase gradient microscopy technique that employs principles from quantum ghost imaging and ghost diffraction.<n>In this method, a transparent sample is illuminated by both photons of an entangled pair - one detected in the near-field (position) and the other in the far-field (momentum)<n>We demonstrate quantitative phase and amplitude imaging with a spatial resolution of 2.76 $mu$m and a phase sensitivity of $lambda/100$ using femtowatts of illuminating power.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an entanglement-based quantitative phase gradient microscopy technique that employs principles from quantum ghost imaging and ghost diffraction. In this method, a transparent sample is illuminated by both photons of an entangled pair - one detected in the near-field (position) and the other in the far-field (momentum). Due to the strong correlations offered by position-momentum entanglement, both conjugate observables can be inferred nonlocally, effectively enabling simultaneous access to the sample's transmission and phase gradient information. This dual-domain measurement allows for the quantitative recovery of the full amplitude and phase profile of the sample. Unlike conventional classical and quantum phase imaging methods, our approach requires no interferometry, spatial scanning, microlens arrays, or iterative phase-retrieval algorithms, thereby circumventing many of their associated limitations. Furthermore, intrinsic temporal correlations between entangled photons provide robustness against dynamic and structured background light. We demonstrate quantitative phase and amplitude imaging with a spatial resolution of 2.76 $\mu$m and a phase sensitivity of $\lambda/100$ using femtowatts of illuminating power, representing the highest performance reported to date in quantum phase imaging. This technique opens new possibilities for non-invasive imaging of photosensitive samples, wavefront sensing in adaptive optics, and imaging under complex lighting environments.
Related papers
- Quantum adaptive imaging by position-correlated biphoton wavefront sensing [7.633060349568631]
We introduce position-correlated biphoton Shack-Hartmann wavefront sensing.
We experimentally demonstrate this method by performing phase measurement and adaptive imaging against the disturbance of a plastic film.
arXiv Detail & Related papers (2025-04-30T12:25:26Z) - Phase Dependent Quantum Optical Coherence Tomography [0.0]
Entanglement is a key resource in quantum technologies, enhancing precision and resolution in imaging and sensing.
We show that phase-shifting entangled photon pairs in a Hong-Ou-Mandel interferometer can lead to tangible advancements in quantum sensing and probing.
arXiv Detail & Related papers (2025-03-09T20:58:26Z) - A phase microscope for quantum gases [0.0]
Coherence properties are central to quantum systems and are at the heart of phenomena such as superconductivity.
We study coherence properties of an ultracold Bose gas in a two-dimensional optical lattice across the thermal phase transition.
arXiv Detail & Related papers (2024-10-14T15:17:45Z) - Characterizing Biphoton Spatial Wave Function Dynamics with Quantum Wavefront Sensing [9.095723333008811]
We introduce quantum Shack-Hartmann wavefront sensing to perform efficient and reference-free measurement of the biphoton spatial wave function.
Our work is a crucial step in quantum physical and adaptive optics and paves the way for characterizing quantum optical fields with high-order correlations or topological patterns.
arXiv Detail & Related papers (2024-06-07T14:37:45Z) - Estimation with ultimate quantum precision of the transverse displacement between two photons via two-photon interference sampling measurements [0.0]
We present a quantum sensing scheme achieving the ultimate quantum sensitivity in the estimation of the transverse displacement between two photons interfering at a balanced beam splitter.
This scheme can possibly lead to enhanced high-precision nanoscopic techniques, such as super-resolved single-molecule localization microscopy with quantum dots.
arXiv Detail & Related papers (2023-09-13T11:18:00Z) - Shaping Single Photons through Multimode Optical Fibers using Mechanical
Perturbations [55.41644538483948]
We show an all-fiber approach for controlling the shape of single photons and the spatial correlations between entangled photon pairs.
We optimize these perturbations to localize the spatial distribution of a single photon or the spatial correlations of photon pairs in a single spot.
arXiv Detail & Related papers (2023-06-04T07:33:39Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Interferometric imaging of amplitude and phase of spatial biphoton
states [0.0]
High-dimensional biphoton states are promising resources for quantum applications.
Characterising these states is time-consuming and not scalable when projective measurement approaches are adopted.
We introduce biphoton digital holography, in analogy to off-axis digital holography.
arXiv Detail & Related papers (2023-01-30T16:38:47Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Quantifying n-photon indistinguishability with a cyclic integrated
interferometer [40.24757332810004]
We report on a universal method to measure the genuine indistinguishability of n-photons.
Our approach relies on a low-depth cyclic multiport interferometer with N = 2n modes.
We experimentally demonstrate this technique for a 8-mode integrated interferometer fabricated using femtosecond laser micromachining.
arXiv Detail & Related papers (2022-01-31T16:30:52Z) - Phase retrieval enhanced by quantum correlation [0.0]
We propose a technique which exploits entanglement to enhance quantitative phase retrieval of an object in a non-interferometric setting.
This protocol can find application in optical microscopy and X-ray imaging, reducing the photon dose necessary to achieve a fixed signal-to-noise ratio.
arXiv Detail & Related papers (2021-09-21T10:58:48Z) - Microscopy with heralded Fock states [0.0]
Spontaneous parametric down conversion (SPDC) is used as a source of a heralded single photon, which is quantum light prepared in a Fock state.
We present analytical formulas for the spatial mode tracking along with the heralded and non-heralded mode widths.
arXiv Detail & Related papers (2020-11-05T19:00:27Z) - Two-photon phase-sensing with single-photon detection [0.0]
Path-entangled multi-photon states allow optical phase-sensing beyond the shot-noise limit.
We exploit advanced quantum state engineering based on superposing two photon-pair creation events.
We infer phase shifts by measuring the average intensity of the single-photon beam on a photodiode.
arXiv Detail & Related papers (2020-07-06T08:50:37Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Spectrally reconfigurable quantum emitters enabled by optimized fast
modulation [42.39394379814941]
Spectral control in solid state platforms such as color centers, rare earth ions, and quantum dots is attractive for realizing such applications on-chip.
We propose the use of frequency-modulated optical transitions for spectral engineering of single photon emission.
Our results suggest that frequency modulation is a powerful technique for the generation of new light states with unprecedented control over the spectral and temporal properties of single photons.
arXiv Detail & Related papers (2020-03-27T18:24:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.