論文の概要: On Positional and Structural Node Features for Graph Neural Networks on
Non-attributed Graphs
- arxiv url: http://arxiv.org/abs/2107.01495v1
- Date: Sat, 3 Jul 2021 20:37:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-06 15:10:23.974903
- Title: On Positional and Structural Node Features for Graph Neural Networks on
Non-attributed Graphs
- Title(参考訳): 非分散グラフ上のグラフニューラルネットワークの位置および構造ノード特徴について
- Authors: Hejie Cui, Zijie Lu, Pan Li, and Carl Yang
- Abstract要約: グラフニューラルネットワーク(GNN)は,ノード分類やグラフ分類など,さまざまなグラフ関連問題に広く利用されている。
GNNが自然なノード機能なしでどのように機能するかはよく分かっていない。
本稿では,2種類の人工ノード特徴,すなわち位置ノード特徴と構造ノード特徴を指摘し,それぞれが特定のタスクに適している理由について考察する。
- 参考スコア(独自算出の注目度): 12.213147724959628
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have been widely used in various graph-related
problems such as node classification and graph classification, where the
superior performance is mainly established when natural node features are
available. However, it is not well understood how GNNs work without natural
node features, especially regarding the various ways to construct artificial
ones. In this paper, we point out the two types of artificial node
features,i.e., positional and structural node features, and provide insights on
why each of them is more appropriate for certain tasks,i.e., positional node
classification, structural node classification, and graph classification.
Extensive experimental results on 10 benchmark datasets validate our insights,
thus leading to a practical guideline on the choices between different
artificial node features for GNNs on non-attributed graphs. The code is
available at https://github.com/zjzijielu/gnn-exp/.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、ノード分類やグラフ分類など、様々なグラフ関連問題で広く用いられている。
しかしながら、gnnが自然ノード機能なしでどのように機能するか、特に人工ノードを構築する様々な方法に関して、よく理解されていない。
本稿では,2種類の人工ノードの特徴,すなわち位置ノードの特徴と構造ノードの特徴を指摘し,それぞれが特定のタスク,すなわち位置ノードの分類,構造ノードの分類,グラフの分類に適している理由について考察する。
10のベンチマークデータセットによる大規模な実験結果から、非分散グラフ上のGNNの異なる人工ノード機能の選択に関する実践的なガイドラインが導かれる。
コードはhttps://github.com/zjzijielu/gnn-exp/で入手できる。
関連論文リスト
- Degree-based stratification of nodes in Graph Neural Networks [66.17149106033126]
グラフニューラルネットワーク(GNN)アーキテクチャを変更して,各グループのノードに対して,重み行列を個別に学習する。
このシンプルな実装変更により、データセットとGNNメソッドのパフォーマンスが改善されているようだ。
論文 参考訳(メタデータ) (2023-12-16T14:09:23Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
本稿では,シーケンシャルノード表現,すなわちSeq-HGNNを用いた新しい異種グラフニューラルネットワークを提案する。
Heterogeneous Graph Benchmark (HGB) と Open Graph Benchmark (OGB) の4つの広く使われているデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-05-18T07:27:18Z) - Graph Neural Networks with Precomputed Node Features [14.06168080755072]
グラフニューラルネットワーク(GNN)は、グラフ内のいくつかのグラフや、実際にはいくつかのノードを区別できない。
例えば, (i) 位置ノード埋め込み, (ii) 標準ノードID, (iii) ランダム特徴について述べる。
確立したGNNベンチマークで異なる拡張が競争力を発揮することを示し、いつ使うべきかをアドバイスする。
論文 参考訳(メタデータ) (2022-06-01T17:16:37Z) - Incorporating Heterophily into Graph Neural Networks for Graph Classification [6.709862924279403]
グラフニューラルネットワーク(GNN)は、しばしばグラフ分類において強いホモフィリを仮定し、ヘテロフィリを考えることは滅多にない。
We developed a novel GNN architecture called IHGNN (short for Incorporated Heterophily into Graph Neural Networks)
我々は、様々なグラフデータセット上でIHGNNを実証的に検証し、グラフ分類のための最先端のGNNよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-03-15T06:48:35Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - Graph Neural Networks with Learnable Structural and Positional
Representations [83.24058411666483]
任意のグラフの大きな問題は、ノードの標準位置情報の欠如である。
ノードの位置ノード(PE)を導入し、Transformerのように入力層に注入する。
両方のGNNクラスで学習可能なPEを考えると、分子データセットのパフォーマンスは2.87%から64.14%に向上する。
論文 参考訳(メタデータ) (2021-10-15T05:59:15Z) - Position-based Hash Embeddings For Scaling Graph Neural Networks [8.87527266373087]
グラフニューラルネットワーク(GNN)は、ノードのエゴネットワークのトポロジとエゴネットワークのノードの特徴を考慮したノード表現を演算する。
ノードが高品質な機能を持っていない場合、GNNはノードの埋め込みを計算するために埋め込み層を学び、それらを入力機能として使用する。
この埋め込みレイヤに関連するメモリを削減するため、NLPやレコメンダシステムのようなアプリケーションで一般的に使用されるハッシュベースのアプローチが利用可能である。
本稿では,グラフ内のノードの位置を利用して,必要なメモリを大幅に削減する手法を提案する。
論文 参考訳(メタデータ) (2021-08-31T22:42:25Z) - Higher-Order Attribute-Enhancing Heterogeneous Graph Neural Networks [67.25782890241496]
異種ネットワーク表現学習のための高次属性強化グラフニューラルネットワーク(HAEGNN)を提案する。
HAEGNNは、リッチで異質なセマンティクスのためのメタパスとメタグラフを同時に組み込む。
ノード分類、ノードクラスタリング、可視化における最先端の手法よりも優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-04-16T04:56:38Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z) - Explain Graph Neural Networks to Understand Weighted Graph Features in
Node Classification [15.41200827860072]
本稿では,情報成分と重要なノード特徴を特定するために,新しいグラフ特徴の説明手法を提案する。
提案手法は,人間の解釈によってノード分類に使用されるデータパターンを模倣できることを示す。
論文 参考訳(メタデータ) (2020-02-02T23:53:21Z) - Graph Inference Learning for Semi-supervised Classification [50.55765399527556]
半教師付きノード分類の性能を高めるためのグラフ推論学習フレームワークを提案する。
推論過程の学習には,トレーニングノードから検証ノードへの構造関係のメタ最適化を導入する。
4つのベンチマークデータセットの総合的な評価は、最先端の手法と比較して提案したGILの優位性を示している。
論文 参考訳(メタデータ) (2020-01-17T02:52:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。