Improved Representation Learning for Session-based Recommendation
- URL: http://arxiv.org/abs/2107.01516v1
- Date: Sun, 4 Jul 2021 00:57:28 GMT
- Title: Improved Representation Learning for Session-based Recommendation
- Authors: Sai Mitheran, Abhinav Java, Surya Kant Sahu and Arshad Shaikh
- Abstract summary: Session-based recommendation systems suggest relevant items to users by modeling user behavior and preferences using short-term anonymous sessions.
Existing methods leverage Graph Neural Networks (GNNs) that propagate and aggregate information from neighboring nodes.
We propose using a Transformer in combination with a target attentive GNN, which allows richer Representation Learning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Session-based recommendation systems suggest relevant items to users by
modeling user behavior and preferences using short-term anonymous sessions.
Existing methods leverage Graph Neural Networks (GNNs) that propagate and
aggregate information from neighboring nodes i.e., local message passing. Such
graph-based architectures have representational limits, as a single sub-graph
is susceptible to overfit the sequential dependencies instead of accounting for
complex transitions between items in different sessions. We propose using a
Transformer in combination with a target attentive GNN, which allows richer
Representation Learning. Our experimental results and ablation show that our
proposed method outperforms the existing methods on real-world benchmark
datasets.
Related papers
- Contrastive Multi-Level Graph Neural Networks for Session-based
Recommendation [11.9213348043964]
Session-based recommendation (SBR) aims to predict the next item at a certain time point based on anonymous user behavior sequences.
Existing methods typically model session representation based on simple item transition information.
We propose a novel contrastive multi-level graph neural networks (CM-GNN) to better exploit complex and high-order item transition information.
arXiv Detail & Related papers (2023-11-06T08:11:32Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
We develop a hierarchical Bayesian model termed ordinal graph factor analysis (OGFA), which jointly models user-item and user-user interactions.
OGFA not only achieves good recommendation performance, but also extracts interpretable latent factors corresponding to representative user preferences.
We extend OGFA to ordinal graph gamma belief network, which is a multi-stochastic-layer deep probabilistic model.
arXiv Detail & Related papers (2022-09-12T09:19:22Z) - Enhancing Sequential Recommendation with Graph Contrastive Learning [64.05023449355036]
This paper proposes a novel sequential recommendation framework, namely Graph Contrastive Learning for Sequential Recommendation (GCL4SR)
GCL4SR employs a Weighted Item Transition Graph (WITG), built based on interaction sequences of all users, to provide global context information for each interaction and weaken the noise information in the sequence data.
Experiments on real-world datasets demonstrate that GCL4SR consistently outperforms state-of-the-art sequential recommendation methods.
arXiv Detail & Related papers (2022-05-30T03:53:31Z) - Heterogeneous Graph Neural Network for Personalized Session-Based
Recommendation with User-Session Constraints [0.0]
Session-based recommendation attempts to recommend items by interpreting sessions that consist of sequences of items.
In this paper, we consider various relationships in graph created by sessions through Heterogeneous attention network.
It seeks to increase performance through additional optimization in the training process.
arXiv Detail & Related papers (2022-05-23T14:35:26Z) - Multi-Behavior Enhanced Recommendation with Cross-Interaction
Collaborative Relation Modeling [42.6279077675585]
This work proposes a Graph Neural Multi-Behavior Enhanced Recommendation framework.
It explicitly models the dependencies between different types of user-item interactions under a graph-based message passing architecture.
Experiments on real-world recommendation datasets show that our GNMR consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2022-01-07T03:12:37Z) - Edge-Enhanced Global Disentangled Graph Neural Network for Sequential
Recommendation [44.15486708923762]
We propose an Edge-Enhanced Global Disentangled Graph Neural Network (EGD-GNN) model to capture the relation information between items.
At the global level, we build a global-link graph over all sequences to model item relationships.
At the local level, we apply a variational auto-encoder framework to learn user intention over the current sequence.
arXiv Detail & Related papers (2021-11-20T08:15:20Z) - Graph Convolutional Embeddings for Recommender Systems [67.5973695167534]
We propose a graph convolutional embedding layer for N-partite graphs that processes user-item-context interactions.
More specifically, we define a graph convolutional embedding layer for N-partite graphs that processes user-item-context interactions.
arXiv Detail & Related papers (2021-03-05T10:46:16Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
Knowledge graph (KG) plays an increasingly important role in recommender systems.
Existing GNN-based models fail to identify user-item relation at a fine-grained level of intents.
We propose a new model, Knowledge Graph-based Intent Network (KGIN)
arXiv Detail & Related papers (2021-02-14T03:21:36Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z) - TAGNN: Target Attentive Graph Neural Networks for Session-based
Recommendation [66.04457457299218]
We propose a novel target attentive graph neural network (TAGNN) model for session-based recommendation.
In TAGNN, target-aware attention adaptively activates different user interests with respect to varied target items.
The learned interest representation vector varies with different target items, greatly improving the expressiveness of the model.
arXiv Detail & Related papers (2020-05-06T14:17:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.