Graph Convolutional Embeddings for Recommender Systems
- URL: http://arxiv.org/abs/2103.03587v1
- Date: Fri, 5 Mar 2021 10:46:16 GMT
- Title: Graph Convolutional Embeddings for Recommender Systems
- Authors: Paula G\'omez Duran, Alexandros Karatzoglou, Jordi Vitri\`a, Xin Xin,
Ioannis Arapakis
- Abstract summary: We propose a graph convolutional embedding layer for N-partite graphs that processes user-item-context interactions.
More specifically, we define a graph convolutional embedding layer for N-partite graphs that processes user-item-context interactions.
- Score: 67.5973695167534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern recommender systems (RS) work by processing a number of signals that
can be inferred from large sets of user-item interaction data. The main signal
to analyze stems from the raw matrix that represents interactions. However, we
can increase the performance of RS by considering other kinds of signals like
the context of interactions, which could be, for example, the time or date of
the interaction, the user location, or sequential data corresponding to the
historical interactions of the user with the system. These complex,
context-based interaction signals are characterized by a rich relational
structure that can be represented by a multi-partite graph. Graph Convolutional
Networks (GCNs) have been used successfully in collaborative filtering with
simple user-item interaction data. In this work, we generalize the use of GCNs
for N-partite graphs by considering N multiple context dimensions and propose a
simple way for their seamless integration in modern deep learning RS
architectures. More specifically, we define a graph convolutional embedding
layer for N-partite graphs that processes user-item-context interactions, and
constructs node embeddings by leveraging their relational structure.
Experiments on several datasets from recommender systems to drug re-purposing
show the benefits of the introduced GCN embedding layer by measuring the
performance of different context-enriched tasks.
Related papers
- DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
We develop a hierarchical Bayesian model termed ordinal graph factor analysis (OGFA), which jointly models user-item and user-user interactions.
OGFA not only achieves good recommendation performance, but also extracts interpretable latent factors corresponding to representative user preferences.
We extend OGFA to ordinal graph gamma belief network, which is a multi-stochastic-layer deep probabilistic model.
arXiv Detail & Related papers (2022-09-12T09:19:22Z) - Graph Ordering Attention Networks [22.468776559433614]
Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data.
We introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood.
GOAT layer demonstrates its increased performance in modeling graph metrics that capture complex information.
arXiv Detail & Related papers (2022-04-11T18:13:19Z) - IA-GCN: Interactive Graph Convolutional Network for Recommendation [13.207235494649343]
Graph Convolutional Network (GCN) has become a novel state-of-the-art for Collaborative Filtering (CF) based Recommender Systems (RS)
We build bilateral interactive guidance between each user-item pair and propose a new model named IA-GCN (short for InterActive GCN)
Our model is built on top of LightGCN, a state-of-the-art GCN model for CF, and can be combined with various GCN-based CF architectures in an end-to-end fashion.
arXiv Detail & Related papers (2022-04-08T03:38:09Z) - Multi-Behavior Enhanced Recommendation with Cross-Interaction
Collaborative Relation Modeling [42.6279077675585]
This work proposes a Graph Neural Multi-Behavior Enhanced Recommendation framework.
It explicitly models the dependencies between different types of user-item interactions under a graph-based message passing architecture.
Experiments on real-world recommendation datasets show that our GNMR consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2022-01-07T03:12:37Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
This work proposes a Knowledge-Enhanced Hierarchical Graph Transformer Network (KHGT) to investigate multi-typed interactive patterns between users and items in recommender systems.
KHGT is built upon a graph-structured neural architecture to capture type-specific behavior characteristics.
We show that KHGT consistently outperforms many state-of-the-art recommendation methods across various evaluation settings.
arXiv Detail & Related papers (2021-10-08T09:44:00Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNN is a novel Reinforced, recursive and flexible neighborhood selection guided multi-relational Graph Neural Network architecture.
RioGNN can learn more discriminative node embedding with enhanced explainability due to the recognition of individual importance of each relation.
arXiv Detail & Related papers (2021-04-16T04:30:06Z) - Node Similarity Preserving Graph Convolutional Networks [51.520749924844054]
Graph Neural Networks (GNNs) explore the graph structure and node features by aggregating and transforming information within node neighborhoods.
We propose SimP-GCN that can effectively and efficiently preserve node similarity while exploiting graph structure.
We validate the effectiveness of SimP-GCN on seven benchmark datasets including three assortative and four disassorative graphs.
arXiv Detail & Related papers (2020-11-19T04:18:01Z) - Hierarchical BiGraph Neural Network as Recommendation Systems [0.0]
We propose a hierarchical approach of using GNNs as recommendation systems and structuring the user-item features using a bigraph framework.
Our experimental results show competitive performance with current recommendation system methods and transferability.
arXiv Detail & Related papers (2020-07-27T18:01:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.