Dynamic programming by polymorphic semiring algebraic shortcut fusion
- URL: http://arxiv.org/abs/2107.01752v5
- Date: Thu, 4 Jan 2024 11:53:29 GMT
- Title: Dynamic programming by polymorphic semiring algebraic shortcut fusion
- Authors: Max A. Little, Xi He, Ugur Kayas
- Abstract summary: Dynamic programming (DP) is an algorithmic design paradigm for the efficient, exact solution of intractable, problems.
This paper presents a rigorous algebraic formalism for systematically deriving DP algorithms, based on semiring.
- Score: 1.9405875431318445
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Dynamic programming (DP) is an algorithmic design paradigm for the efficient,
exact solution of otherwise intractable, combinatorial problems. However, DP
algorithm design is often presented in an ad-hoc manner. It is sometimes
difficult to justify algorithm correctness. To address this issue, this paper
presents a rigorous algebraic formalism for systematically deriving DP
algorithms, based on semiring polymorphism. We start with a specification,
construct an algorithm to compute the required solution which is self-evidently
correct because it exhaustively generates and evaluates all possible solutions
meeting the specification. We then derive, through the use of shortcut fusion,
an implementation of this algorithm which is both efficient and correct. We
also demonstrate how, with the use of semiring lifting, the specification can
be augmented with combinatorial constraints, showing how these constraints can
be fused with the algorithm. We furthermore demonstrate how existing DP
algorithms for a given combinatorial problem can be abstracted from their
original context and re-purposed.
This approach can be applied to the full scope of combinatorial problems
expressible in terms of semirings. This includes, for example: optimal
probability and Viterbi decoding, probabilistic marginalization, logical
inference, fuzzy sets, differentiable softmax, relational and provenance
queries. The approach, building on ideas from the existing literature on
constructive algorithmics, exploits generic properties of polymorphic
functions, tupling and formal sums and algebraic simplifications arising from
constraint algebras. We demonstrate the effectiveness of this formalism for
some example applications arising in signal processing, bioinformatics and
reliability engineering. Python software implementing these algorithms can be
downloaded from: http://www.maxlittle.net/software/dppolyalg.zip.
Related papers
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - EKM: An exact, polynomial-time algorithm for the $K$-medoids problem [1.9405875431318445]
We present EKM: a novel algorithm for solving this problem exactly with worst-case $Oleft(NK+1right)$ complexity.
EKM is developed according to recent advances in transformational programming and generation, using formal program steps.
We show that the wall-clock run time of our algorithm matches the worst-case time complexity analysis on synthetic datasets.
arXiv Detail & Related papers (2024-05-16T15:11:37Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - On a class of geodesically convex optimization problems solved via
Euclidean MM methods [50.428784381385164]
We show how a difference of Euclidean convexization functions can be written as a difference of different types of problems in statistics and machine learning.
Ultimately, we helps the broader broader the broader the broader the broader the work.
arXiv Detail & Related papers (2022-06-22T23:57:40Z) - Power of human-algorithm collaboration in solving combinatorial
optimization problems [0.0]
We show that a class of optimization problems can be solved efficiently in expectation up to a multiplicative factor $epsilon$ where $epsilon$ is arbitrary constant.
While our proposed methods are merely theoretical, they cast new light on how to approach solving these problems that have been usually considered intractable.
arXiv Detail & Related papers (2021-07-25T11:21:59Z) - Adaptive Sampling for Fast Constrained Maximization of Submodular
Function [8.619758302080891]
We develop an algorithm with poly-logarithmic adaptivity for non-monotone submodular under general side constraints.
Our algorithm is suitable to maximize a non-monotone submodular function under a $p$-system side constraint.
arXiv Detail & Related papers (2021-02-12T12:38:03Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Symbolic Regression using Mixed-Integer Nonlinear Optimization [9.638685454900047]
The Symbolic Regression (SR) problem is a hard problem in machine learning.
We propose a hybrid algorithm that combines mixed-integer nonlinear optimization with explicit enumeration.
We show that our algorithm is competitive, for some synthetic data sets, with a state-of-the-art SR software and a recent physics-inspired method called AI Feynman.
arXiv Detail & Related papers (2020-06-11T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.