Power of human-algorithm collaboration in solving combinatorial
optimization problems
- URL: http://arxiv.org/abs/2107.11784v1
- Date: Sun, 25 Jul 2021 11:21:59 GMT
- Title: Power of human-algorithm collaboration in solving combinatorial
optimization problems
- Authors: Tapani Toivonen
- Abstract summary: We show that a class of optimization problems can be solved efficiently in expectation up to a multiplicative factor $epsilon$ where $epsilon$ is arbitrary constant.
While our proposed methods are merely theoretical, they cast new light on how to approach solving these problems that have been usually considered intractable.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many combinatorial optimization problems are often considered intractable to
solve exactly or by approximation. An example of such problem is maximum clique
which -- under standard assumptions in complexity theory -- cannot be solved in
sub-exponential time or be approximated within polynomial factor efficiently.
We show that if a polynomial time algorithm can query informative Gaussian
priors from an expert $poly(n)$ times, then a class of combinatorial
optimization problems can be solved efficiently in expectation up to a
multiplicative factor $\epsilon$ where $\epsilon$ is arbitrary constant. While
our proposed methods are merely theoretical, they cast new light on how to
approach solving these problems that have been usually considered intractable.
Related papers
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - EKM: An exact, polynomial-time algorithm for the $K$-medoids problem [1.9405875431318445]
We present EKM: a novel algorithm for solving this problem exactly with worst-case $Oleft(NK+1right)$ complexity.
EKM is developed according to recent advances in transformational programming and generation, using formal program steps.
We show that the wall-clock run time of our algorithm matches the worst-case time complexity analysis on synthetic datasets.
arXiv Detail & Related papers (2024-05-16T15:11:37Z) - Evaluating Genetic Algorithms through the Approximability Hierarchy [55.938644481736446]
In this paper, we analyze the usefulness of using genetic algorithms depending on the approximation class the problem belongs to.
In particular, we use the standard approximability hierarchy, showing that genetic algorithms are especially useful for the most pessimistic classes of the hierarchy.
arXiv Detail & Related papers (2024-02-01T09:18:34Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Sparse Polynomial Optimization: Theory and Practice [5.27013884159732]
Book presents several efforts to tackle this challenge with important scientific implications.
It provides alternative optimization schemes that scale well in terms of computational complexity.
We present sparsity-exploiting hierarchies of relaxations, for either unconstrained or constrained problems.
arXiv Detail & Related papers (2022-08-23T18:56:05Z) - Dynamic programming by polymorphic semiring algebraic shortcut fusion [1.9405875431318445]
Dynamic programming (DP) is an algorithmic design paradigm for the efficient, exact solution of intractable, problems.
This paper presents a rigorous algebraic formalism for systematically deriving DP algorithms, based on semiring.
arXiv Detail & Related papers (2021-07-05T00:51:02Z) - Asymptotically Optimal Strategies For Combinatorial Semi-Bandits in
Polynomial Time [6.093245378608679]
We consider semi-bandits with uncorrelated Gaussian rewards.
We propose the first method to compute the solution of the Graves-Lai problem in time for many structures of interest.
arXiv Detail & Related papers (2021-02-14T22:14:28Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
Motivated by recent increased interest in analysis of optimization algorithms for non- optimization in deep networks and other problems in data, we give an overview of recent results of theoretical optimization algorithms for non- optimization.
arXiv Detail & Related papers (2020-12-11T08:28:51Z) - Divide and Learn: A Divide and Conquer Approach for Predict+Optimize [50.03608569227359]
The predict+optimize problem combines machine learning ofproblem coefficients with a optimization prob-lem that uses the predicted coefficients.
We show how to directlyexpress the loss of the optimization problem in terms of thepredicted coefficients as a piece-wise linear function.
We propose a novel divide and algorithm to tackle optimization problems without this restriction and predict itscoefficients using the optimization loss.
arXiv Detail & Related papers (2020-12-04T00:26:56Z) - SURF: A Simple, Universal, Robust, Fast Distribution Learning Algorithm [64.13217062232874]
SURF is an algorithm for approximating distributions by piecewises.
It outperforms state-of-the-art algorithms in experiments.
arXiv Detail & Related papers (2020-02-22T01:03:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.