論文の概要: Boosting Transferability of Targeted Adversarial Examples via
Hierarchical Generative Networks
- arxiv url: http://arxiv.org/abs/2107.01809v1
- Date: Mon, 5 Jul 2021 06:17:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-06 15:18:21.439600
- Title: Boosting Transferability of Targeted Adversarial Examples via
Hierarchical Generative Networks
- Title(参考訳): 階層型生成ネットワークによる対象逆行例の伝達性の向上
- Authors: Xiao Yang, Yinpeng Dong, Tianyu Pang, Hang Su, Jun Zhu
- Abstract要約: 転送ベースの敵攻撃はブラックボックス設定におけるモデルロバスト性を効果的に評価することができる。
本稿では,異なるクラスを対象にした対角的例を生成する条件生成攻撃モデルを提案する。
提案手法は,既存の手法と比較して,標的となるブラックボックス攻撃の成功率を大幅に向上させる。
- 参考スコア(独自算出の注目度): 56.96241557830253
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transfer-based adversarial attacks can effectively evaluate model robustness
in the black-box setting. Though several methods have demonstrated impressive
transferability of untargeted adversarial examples, targeted adversarial
transferability is still challenging. The existing methods either have low
targeted transferability or sacrifice computational efficiency. In this paper,
we develop a simple yet practical framework to efficiently craft targeted
transfer-based adversarial examples. Specifically, we propose a conditional
generative attacking model, which can generate the adversarial examples
targeted at different classes by simply altering the class embedding and share
a single backbone. Extensive experiments demonstrate that our method improves
the success rates of targeted black-box attacks by a significant margin over
the existing methods -- it reaches an average success rate of 29.6\% against
six diverse models based only on one substitute white-box model in the standard
testing of NeurIPS 2017 competition, which outperforms the state-of-the-art
gradient-based attack methods (with an average success rate of $<$2\%) by a
large margin. Moreover, the proposed method is also more efficient beyond an
order of magnitude than gradient-based methods.
- Abstract(参考訳): 転送ベースの敵攻撃はブラックボックス設定におけるモデルロバスト性を効果的に評価することができる。
対象外の敵の移動可能性を示す手法はいくつかあるが、対象とする敵の移動性は依然として困難である。
既存の手法は、低い転送可能性を持つか、計算効率を犠牲にする。
本稿では,本手法を応用した簡易かつ実用的なフレームワークを開発した。
具体的には,クラス埋め込みを単純に変更し,単一のバックボーンを共有することで,異なるクラスを対象にした逆例を生成する条件生成攻撃モデルを提案する。
大規模な実験により,既存の手法に比べて目標となるブラックボックス攻撃の成功率が大幅に向上することが示され,NeurIPS 2017コンペティションの標準テストにおいて,代用ホワイトボックスモデルのみに基づく6種類のモデルに対して平均29.6\%に達し,最先端の勾配ベース攻撃手法(平均成功率$<2\%)を大きなマージンで上回った。
さらに,提案手法は勾配法よりも桁違いに効率的である。
関連論文リスト
- Hard-label based Small Query Black-box Adversarial Attack [2.041108289731398]
本稿では,事前訓練したサロゲートモデルによって誘導される最適化プロセスを用いて,ハードラベルに基づく攻撃の実用的設定を提案する。
提案手法は,ベンチマークの約5倍の攻撃成功率を達成する。
論文 参考訳(メタデータ) (2024-03-09T21:26:22Z) - Enhancing Adversarial Attacks: The Similar Target Method [6.293148047652131]
敵対的な例は、ディープニューラルネットワークのアプリケーションに脅威をもたらす。
ディープニューラルネットワークは敵の例に対して脆弱であり、モデルのアプリケーションに脅威を与え、セキュリティ上の懸念を提起する。
我々はSimisal Target(ST)という類似の攻撃手法を提案する。
論文 参考訳(メタデータ) (2023-08-21T14:16:36Z) - Logit Margin Matters: Improving Transferable Targeted Adversarial Attack
by Logit Calibration [85.71545080119026]
クロスエントロピー(CE)損失関数は、伝達可能な標的対向例を学習するには不十分である。
本稿では,ロジットを温度係数と適応マージンでダウンスケールすることで,ロジットのキャリブレーションを簡易かつ効果的に行う2つの手法を提案する。
ImageNetデータセットを用いて実験を行い,提案手法の有効性を検証した。
論文 参考訳(メタデータ) (2023-03-07T06:42:52Z) - Making Substitute Models More Bayesian Can Enhance Transferability of
Adversarial Examples [89.85593878754571]
ディープニューラルネットワークにおける敵の例の転送可能性は多くのブラックボックス攻撃の欠如である。
我々は、望ましい転送可能性を達成するためにベイズモデルを攻撃することを提唱する。
我々の手法は近年の最先端を大きなマージンで上回る。
論文 参考訳(メタデータ) (2023-02-10T07:08:13Z) - Query Efficient Cross-Dataset Transferable Black-Box Attack on Action
Recognition [99.29804193431823]
ブラックボックスの敵攻撃は、行動認識システムに現実的な脅威をもたらす。
本稿では,摂動を発生させることにより,これらの欠点に対処する新たな行動認識攻撃を提案する。
提案手法は,最先端のクエリベースおよび転送ベース攻撃と比較して,8%,12%の偽装率を達成する。
論文 参考訳(メタデータ) (2022-11-23T17:47:49Z) - Transferability Ranking of Adversarial Examples [20.41013432717447]
本稿では,転送攻撃処理を洗練させるランキング戦略を提案する。
多様な代理モデルの集合を利用することで, 逆例の転送可能性を予測することができる。
提案手法を用いて, 対向例の移動率を, ランダムな選択から, ほぼ上界レベルまで20%に引き上げることができた。
論文 参考訳(メタデータ) (2022-08-23T11:25:16Z) - Query-Efficient Black-box Adversarial Attacks Guided by a Transfer-based
Prior [50.393092185611536]
対象モデルの勾配にアクセスできることなく、敵が敵の例を作らなければならないブラックボックスの敵設定を考える。
従来の手法では、代用ホワイトボックスモデルの転送勾配を用いたり、モデルクエリのフィードバックに基づいて真の勾配を近似しようとした。
偏りサンプリングと勾配平均化に基づく2つの事前誘導型ランダム勾配フリー(PRGF)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-13T04:06:27Z) - Improving Adversarial Transferability with Gradient Refining [7.045900712659982]
逆の例は、人間の知覚できない摂動を原画像に加えることによって作られる。
ディープニューラルネットワークは、原画像に人間に知覚不能な摂動を加えることによって作られる逆転例に対して脆弱である。
論文 参考訳(メタデータ) (2021-05-11T07:44:29Z) - Adversarial example generation with AdaBelief Optimizer and Crop
Invariance [8.404340557720436]
敵攻撃は、安全クリティカルなアプリケーションにおいて堅牢なモデルを評価し、選択するための重要な方法である。
本稿では,AdaBelief Iterative Fast Gradient Method (ABI-FGM)とCrop-Invariant attack Method (CIM)を提案する。
我々の手法は、最先端の勾配に基づく攻撃法よりも成功率が高い。
論文 参考訳(メタデータ) (2021-02-07T06:00:36Z) - Two Sides of the Same Coin: White-box and Black-box Attacks for Transfer
Learning [60.784641458579124]
ホワイトボックスFGSM攻撃によるモデルロバスト性を効果的に向上することを示す。
また,移動学習モデルに対するブラックボックス攻撃手法を提案する。
ホワイトボックス攻撃とブラックボックス攻撃の双方の効果を系統的に評価するために,ソースモデルからターゲットモデルへの変換可能性の評価手法を提案する。
論文 参考訳(メタデータ) (2020-08-25T15:04:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。