Tackling COVID-19 Infodemic using Deep Learning
- URL: http://arxiv.org/abs/2107.02012v1
- Date: Thu, 1 Jul 2021 11:07:47 GMT
- Title: Tackling COVID-19 Infodemic using Deep Learning
- Authors: Prathmesh Pathwar, Simran Gill
- Abstract summary: We try to detect and classify fake news on online media to detect fake information relating to COVID-19 and coronavirus.
The dataset contained fake posts, articles and news gathered from fact checking websites like politifact whereas real tweets were taken from verified twitter handles.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Humanity is battling one of the most deleterious virus in modern history, the
COVID-19 pandemic, but along with the pandemic there's an infodemic permeating
the pupil and society with misinformation which exacerbates the current malady.
We try to detect and classify fake news on online media to detect fake
information relating to COVID-19 and coronavirus. The dataset contained fake
posts, articles and news gathered from fact checking websites like politifact
whereas real tweets were taken from verified twitter handles. We incorporated
multiple conventional classification techniques like Naive Bayes, KNN, Gradient
Boost and Random Forest along with Deep learning approaches, specifically CNN,
RNN, DNN and the ensemble model RMDL. We analyzed these approaches with two
feature extraction techniques, TF-IDF and GloVe Word Embeddings which would
provide deeper insights into the dataset containing COVID-19 info on online
media.
Related papers
- Machine Learning-based Automatic Annotation and Detection of COVID-19
Fake News [8.020736472947581]
COVID-19 impacted every part of the world, although the misinformation about the outbreak traveled faster than the virus.
Existing work neglects the presence of bots that act as a catalyst in the spread.
We propose an automated approach for labeling data using verified fact-checked statements on a Twitter dataset.
arXiv Detail & Related papers (2022-09-07T13:55:59Z) - "COVID-19 was a FIFA conspiracy #curropt": An Investigation into the
Viral Spread of COVID-19 Misinformation [60.268682953952506]
We estimate the extent to which misinformation has influenced the course of the COVID-19 pandemic using natural language processing models.
We provide a strategy to combat social media posts that are likely to cause widespread harm.
arXiv Detail & Related papers (2022-06-12T19:41:01Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
COVID-19 pandemic has spread rapidly and caused a shortage of global medical resources.
CNN has been widely utilized and verified in analyzing medical images.
arXiv Detail & Related papers (2022-03-24T02:09:41Z) - Cross-lingual COVID-19 Fake News Detection [54.125563009333995]
We make the first attempt to detect COVID-19 misinformation in a low-resource language (Chinese) only using the fact-checked news in a high-resource language (English)
We propose a deep learning framework named CrossFake to jointly encode the cross-lingual news body texts and capture the news content.
Empirical results on our dataset demonstrate the effectiveness of CrossFake under the cross-lingual setting.
arXiv Detail & Related papers (2021-10-13T04:44:02Z) - Detection of fake news on CoViD-19 on Web Search Engines [0.0]
After China reported the first cases of the new coronavirus (SARS-CoV-2), unreliable and not fully accurate information has started spreading faster than the virus itself.
This study aims to detect potential misleading and fake contents by capturing and analysing textual information, which flow through Search Engines.
arXiv Detail & Related papers (2021-03-22T13:07:26Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
We study robustness of CNNs against white-box and black-box adversarial attacks.
Results are shown for distilled CNNs, agent-based state-of-the-art pruned models, and binarized neural networks.
arXiv Detail & Related papers (2021-03-14T20:43:19Z) - TIB's Visual Analytics Group at MediaEval '20: Detecting Fake News on
Corona Virus and 5G Conspiracy [9.66022279280394]
Fake news on social media has become a hot topic of research as it negatively impacts the discourse of real news in the public.
The FakeNews task at MediaEval 2020 tackles this problem by creating a challenge to automatically detect tweets containing misinformation.
We present a simple approach that uses BERT embeddings and a shallow neural network for classifying tweets using only text.
arXiv Detail & Related papers (2021-01-10T11:52:17Z) - Transformer based Automatic COVID-19 Fake News Detection System [9.23545668304066]
Misinformation is especially prevalent in the ongoing coronavirus disease (COVID-19) pandemic.
We report a methodology to analyze the reliability of information shared on social media pertaining to the COVID-19 pandemic.
Our system obtained 0.9855 f1-score on testset and ranked 5th among 160 teams.
arXiv Detail & Related papers (2021-01-01T06:49:27Z) - Two Stage Transformer Model for COVID-19 Fake News Detection and Fact
Checking [0.3441021278275805]
We develop a two stage automated pipeline for COVID-19 fake news detection using state of the art machine learning models for natural language processing.
The first model leverages a novel fact checking algorithm that retrieves the most relevant facts concerning user claims about particular COVID-19 claims.
The second model verifies the level of truth in the claim by computing the textual entailment between the claim and the true facts retrieved from a manually curated COVID-19 dataset.
arXiv Detail & Related papers (2020-11-26T11:50:45Z) - Machine Learning Explanations to Prevent Overtrust in Fake News
Detection [64.46876057393703]
This research investigates the effects of an Explainable AI assistant embedded in news review platforms for combating the propagation of fake news.
We design a news reviewing and sharing interface, create a dataset of news stories, and train four interpretable fake news detection algorithms.
For a deeper understanding of Explainable AI systems, we discuss interactions between user engagement, mental model, trust, and performance measures in the process of explaining.
arXiv Detail & Related papers (2020-07-24T05:42:29Z) - Misinformation Has High Perplexity [55.47422012881148]
We propose to leverage the perplexity to debunk false claims in an unsupervised manner.
First, we extract reliable evidence from scientific and news sources according to sentence similarity to the claims.
Second, we prime a language model with the extracted evidence and finally evaluate the correctness of given claims based on the perplexity scores at debunking time.
arXiv Detail & Related papers (2020-06-08T15:13:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.