TIB's Visual Analytics Group at MediaEval '20: Detecting Fake News on
Corona Virus and 5G Conspiracy
- URL: http://arxiv.org/abs/2101.03529v1
- Date: Sun, 10 Jan 2021 11:52:17 GMT
- Title: TIB's Visual Analytics Group at MediaEval '20: Detecting Fake News on
Corona Virus and 5G Conspiracy
- Authors: Gullal S. Cheema, Sherzod Hakimov, Ralph Ewerth
- Abstract summary: Fake news on social media has become a hot topic of research as it negatively impacts the discourse of real news in the public.
The FakeNews task at MediaEval 2020 tackles this problem by creating a challenge to automatically detect tweets containing misinformation.
We present a simple approach that uses BERT embeddings and a shallow neural network for classifying tweets using only text.
- Score: 9.66022279280394
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fake news on social media has become a hot topic of research as it negatively
impacts the discourse of real news in the public. Specifically, the ongoing
COVID-19 pandemic has seen a rise of inaccurate and misleading information due
to the surrounding controversies and unknown details at the beginning of the
pandemic. The FakeNews task at MediaEval 2020 tackles this problem by creating
a challenge to automatically detect tweets containing misinformation based on
text and structure from Twitter follower network. In this paper, we present a
simple approach that uses BERT embeddings and a shallow neural network for
classifying tweets using only text, and discuss our findings and limitations of
the approach in text-based misinformation detection.
Related papers
- Adapting Fake News Detection to the Era of Large Language Models [48.5847914481222]
We study the interplay between machine-(paraphrased) real news, machine-generated fake news, human-written fake news, and human-written real news.
Our experiments reveal an interesting pattern that detectors trained exclusively on human-written articles can indeed perform well at detecting machine-generated fake news, but not vice versa.
arXiv Detail & Related papers (2023-11-02T08:39:45Z) - WSDMS: Debunk Fake News via Weakly Supervised Detection of Misinforming
Sentences with Contextualized Social Wisdom [13.92421433941043]
We investigate a novel task in the field of fake news debunking, which involves detecting sentence-level misinformation.
Inspired by the Multiple Instance Learning (MIL) approach, we propose a model called Weakly Supervised Detection of Misinforming Sentences (WSDMS)
We evaluate WSDMS on three real-world benchmarks and demonstrate that it outperforms existing state-of-the-art baselines in debunking fake news at both the sentence and article levels.
arXiv Detail & Related papers (2023-10-25T12:06:55Z) - ManiTweet: A New Benchmark for Identifying Manipulation of News on Social Media [74.93847489218008]
We present a novel task, identifying manipulation of news on social media, which aims to detect manipulation in social media posts and identify manipulated or inserted information.
To study this task, we have proposed a data collection schema and curated a dataset called ManiTweet, consisting of 3.6K pairs of tweets and corresponding articles.
Our analysis demonstrates that this task is highly challenging, with large language models (LLMs) yielding unsatisfactory performance.
arXiv Detail & Related papers (2023-05-23T16:40:07Z) - Nothing Stands Alone: Relational Fake News Detection with Hypergraph
Neural Networks [49.29141811578359]
We propose to leverage a hypergraph to represent group-wise interaction among news, while focusing on important news relations with its dual-level attention mechanism.
Our approach yields remarkable performance and maintains the high performance even with a small subset of labeled news data.
arXiv Detail & Related papers (2022-12-24T00:19:32Z) - Cross-lingual COVID-19 Fake News Detection [54.125563009333995]
We make the first attempt to detect COVID-19 misinformation in a low-resource language (Chinese) only using the fact-checked news in a high-resource language (English)
We propose a deep learning framework named CrossFake to jointly encode the cross-lingual news body texts and capture the news content.
Empirical results on our dataset demonstrate the effectiveness of CrossFake under the cross-lingual setting.
arXiv Detail & Related papers (2021-10-13T04:44:02Z) - A Study of Fake News Reading and Annotating in Social Media Context [1.0499611180329804]
We present an eye-tracking study, in which we let 44 lay participants to casually read through a social media feed containing posts with news articles, some of which were fake.
In a second run, we asked the participants to decide on the truthfulness of these articles.
We also describe a follow-up qualitative study with a similar scenario but this time with 7 expert fake news annotators.
arXiv Detail & Related papers (2021-09-26T08:11:17Z) - Tackling COVID-19 Infodemic using Deep Learning [0.0]
We try to detect and classify fake news on online media to detect fake information relating to COVID-19 and coronavirus.
The dataset contained fake posts, articles and news gathered from fact checking websites like politifact whereas real tweets were taken from verified twitter handles.
arXiv Detail & Related papers (2021-07-01T11:07:47Z) - User Preference-aware Fake News Detection [61.86175081368782]
Existing fake news detection algorithms focus on mining news content for deceptive signals.
We propose a new framework, UPFD, which simultaneously captures various signals from user preferences by joint content and graph modeling.
arXiv Detail & Related papers (2021-04-25T21:19:24Z) - Misinfo Belief Frames: A Case Study on Covid & Climate News [49.979419711713795]
We propose a formalism for understanding how readers perceive the reliability of news and the impact of misinformation.
We introduce the Misinfo Belief Frames (MBF) corpus, a dataset of 66k inferences over 23.5k headlines.
Our results using large-scale language modeling to predict misinformation frames show that machine-generated inferences can influence readers' trust in news headlines.
arXiv Detail & Related papers (2021-04-18T09:50:11Z) - Hostility Detection and Covid-19 Fake News Detection in Social Media [1.3499391168620467]
We build a model that makes use of an abusive language detector and features extracted via Hindi BERT and Hindi FastText models.
We also build models to identify fake news related to Covid-19 in English tweets.
arXiv Detail & Related papers (2021-01-15T03:24:36Z) - Transformer based Automatic COVID-19 Fake News Detection System [9.23545668304066]
Misinformation is especially prevalent in the ongoing coronavirus disease (COVID-19) pandemic.
We report a methodology to analyze the reliability of information shared on social media pertaining to the COVID-19 pandemic.
Our system obtained 0.9855 f1-score on testset and ranked 5th among 160 teams.
arXiv Detail & Related papers (2021-01-01T06:49:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.