6D Object Pose Estimation using Keypoints and Part Affinity Fields
- URL: http://arxiv.org/abs/2107.02057v1
- Date: Mon, 5 Jul 2021 14:41:19 GMT
- Title: 6D Object Pose Estimation using Keypoints and Part Affinity Fields
- Authors: Moritz Zappel, Simon Bultmann and Sven Behnke
- Abstract summary: The task of 6D object pose estimation from RGB images is an important requirement for autonomous service robots to be able to interact with the real world.
We present a two-step pipeline for estimating the 6 DoF translation and orientation of known objects.
- Score: 24.126513851779936
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The task of 6D object pose estimation from RGB images is an important
requirement for autonomous service robots to be able to interact with the real
world. In this work, we present a two-step pipeline for estimating the 6 DoF
translation and orientation of known objects. Keypoints and Part Affinity
Fields (PAFs) are predicted from the input image adopting the OpenPose CNN
architecture from human pose estimation. Object poses are then calculated from
2D-3D correspondences between detected and model keypoints via the PnP-RANSAC
algorithm. The proposed approach is evaluated on the YCB-Video dataset and
achieves accuracy on par with recent methods from the literature. Using PAFs to
assemble detected keypoints into object instances proves advantageous over only
using heatmaps. Models trained to predict keypoints of a single object class
perform significantly better than models trained for several classes.
Related papers
- LocaliseBot: Multi-view 3D object localisation with differentiable
rendering for robot grasping [9.690844449175948]
We focus on object pose estimation.
Our approach relies on three pieces of information: multiple views of the object, the camera's parameters at those viewpoints, and 3D CAD models of objects.
We show that the estimated object pose results in 99.65% grasp accuracy with the ground truth grasp candidates.
arXiv Detail & Related papers (2023-11-14T14:27:53Z) - YOLOPose V2: Understanding and Improving Transformer-based 6D Pose
Estimation [36.067414358144816]
YOLOPose is a Transformer-based multi-object 6D pose estimation method.
We employ a learnable orientation estimation module to predict the orientation from the keypoints.
Our method is suitable for real-time applications and achieves results comparable to state-of-the-art methods.
arXiv Detail & Related papers (2023-07-21T12:53:54Z) - OnePose++: Keypoint-Free One-Shot Object Pose Estimation without CAD
Models [51.68715543630427]
OnePose relies on detecting repeatable image keypoints and is thus prone to failure on low-textured objects.
We propose a keypoint-free pose estimation pipeline to remove the need for repeatable keypoint detection.
A 2D-3D matching network directly establishes 2D-3D correspondences between the query image and the reconstructed point-cloud model.
arXiv Detail & Related papers (2023-01-18T17:47:13Z) - Neural Correspondence Field for Object Pose Estimation [67.96767010122633]
We propose a method for estimating the 6DoF pose of a rigid object with an available 3D model from a single RGB image.
Unlike classical correspondence-based methods which predict 3D object coordinates at pixels of the input image, the proposed method predicts 3D object coordinates at 3D query points sampled in the camera frustum.
arXiv Detail & Related papers (2022-07-30T01:48:23Z) - Unseen Object 6D Pose Estimation: A Benchmark and Baselines [62.8809734237213]
We propose a new task that enables and facilitates algorithms to estimate the 6D pose estimation of novel objects during testing.
We collect a dataset with both real and synthetic images and up to 48 unseen objects in the test set.
By training an end-to-end 3D correspondences network, our method finds corresponding points between an unseen object and a partial view RGBD image accurately and efficiently.
arXiv Detail & Related papers (2022-06-23T16:29:53Z) - ZebraPose: Coarse to Fine Surface Encoding for 6DoF Object Pose
Estimation [76.31125154523056]
We present a discrete descriptor, which can represent the object surface densely.
We also propose a coarse to fine training strategy, which enables fine-grained correspondence prediction.
arXiv Detail & Related papers (2022-03-17T16:16:24Z) - Weakly Supervised Learning of Keypoints for 6D Object Pose Estimation [73.40404343241782]
We propose a weakly supervised 6D object pose estimation approach based on 2D keypoint detection.
Our approach achieves comparable performance with state-of-the-art fully supervised approaches.
arXiv Detail & Related papers (2022-03-07T16:23:47Z) - Rethinking Keypoint Representations: Modeling Keypoints and Poses as
Objects for Multi-Person Human Pose Estimation [79.78017059539526]
We propose a new heatmap-free keypoint estimation method in which individual keypoints and sets of spatially related keypoints (i.e., poses) are modeled as objects within a dense single-stage anchor-based detection framework.
In experiments, we observe that KAPAO is significantly faster and more accurate than previous methods, which suffer greatly from heatmap post-processing.
Our large model, KAPAO-L, achieves an AP of 70.6 on the Microsoft COCO Keypoints validation set without test-time augmentation.
arXiv Detail & Related papers (2021-11-16T15:36:44Z) - Single-stage Keypoint-based Category-level Object Pose Estimation from
an RGB Image [27.234658117816103]
We propose a single-stage, keypoint-based approach for category-level object pose estimation.
The proposed network performs 2D object detection, detects 2D keypoints, estimates 6-DoF pose, and regresses relative bounding cuboid dimensions.
We conduct extensive experiments on the challenging Objectron benchmark, outperforming state-of-the-art methods on the 3D IoU metric.
arXiv Detail & Related papers (2021-09-13T17:55:00Z) - PrimA6D: Rotational Primitive Reconstruction for Enhanced and Robust 6D
Pose Estimation [11.873744190924599]
We introduce a rotational primitive prediction based 6D object pose estimation using a single image as an input.
We leverage a Variational AutoEncoder (VAE) to learn this underlying primitive and its associated keypoints.
When evaluated over public datasets, our method yields a notable improvement over LINEMOD, Occlusion LINEMOD, and the Y-induced dataset.
arXiv Detail & Related papers (2020-06-14T03:55:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.