Neural Correspondence Field for Object Pose Estimation
- URL: http://arxiv.org/abs/2208.00113v1
- Date: Sat, 30 Jul 2022 01:48:23 GMT
- Title: Neural Correspondence Field for Object Pose Estimation
- Authors: Lin Huang, Tomas Hodan, Lingni Ma, Linguang Zhang, Luan Tran,
Christopher Twigg, Po-Chen Wu, Junsong Yuan, Cem Keskin, Robert Wang
- Abstract summary: We propose a method for estimating the 6DoF pose of a rigid object with an available 3D model from a single RGB image.
Unlike classical correspondence-based methods which predict 3D object coordinates at pixels of the input image, the proposed method predicts 3D object coordinates at 3D query points sampled in the camera frustum.
- Score: 67.96767010122633
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose a method for estimating the 6DoF pose of a rigid object with an
available 3D model from a single RGB image. Unlike classical
correspondence-based methods which predict 3D object coordinates at pixels of
the input image, the proposed method predicts 3D object coordinates at 3D query
points sampled in the camera frustum. The move from pixels to 3D points, which
is inspired by recent PIFu-style methods for 3D reconstruction, enables
reasoning about the whole object, including its (self-)occluded parts. For a 3D
query point associated with a pixel-aligned image feature, we train a
fully-connected neural network to predict: (i) the corresponding 3D object
coordinates, and (ii) the signed distance to the object surface, with the first
defined only for query points in the surface vicinity. We call the mapping
realized by this network as Neural Correspondence Field. The object pose is
then robustly estimated from the predicted 3D-3D correspondences by the
Kabsch-RANSAC algorithm. The proposed method achieves state-of-the-art results
on three BOP datasets and is shown superior especially in challenging cases
with occlusion. The project website is at: linhuang17.github.io/NCF.
Related papers
- Neural Voting Field for Camera-Space 3D Hand Pose Estimation [106.34750803910714]
We present a unified framework for camera-space 3D hand pose estimation from a single RGB image based on 3D implicit representation.
We propose a novel unified 3D dense regression scheme to estimate camera-space 3D hand pose via dense 3D point-wise voting in camera frustum.
arXiv Detail & Related papers (2023-05-07T16:51:34Z) - CheckerPose: Progressive Dense Keypoint Localization for Object Pose
Estimation with Graph Neural Network [66.24726878647543]
Estimating the 6-DoF pose of a rigid object from a single RGB image is a crucial yet challenging task.
Recent studies have shown the great potential of dense correspondence-based solutions.
We propose a novel pose estimation algorithm named CheckerPose, which improves on three main aspects.
arXiv Detail & Related papers (2023-03-29T17:30:53Z) - 3D Surface Reconstruction in the Wild by Deforming Shape Priors from
Synthetic Data [24.97027425606138]
Reconstructing the underlying 3D surface of an object from a single image is a challenging problem.
We present a new method for joint category-specific 3D reconstruction and object pose estimation from a single image.
Our approach achieves state-of-the-art reconstruction performance across several real-world datasets.
arXiv Detail & Related papers (2023-02-24T20:37:27Z) - AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection [15.244852122106634]
We propose an approach for incorporating the shape-aware 2D/3D constraints into the 3D detection framework.
Specifically, we employ the deep neural network to learn distinguished 2D keypoints in the 2D image domain.
For generating the ground truth of 2D/3D keypoints, an automatic model-fitting approach has been proposed.
arXiv Detail & Related papers (2021-08-25T08:50:06Z) - Ground-aware Monocular 3D Object Detection for Autonomous Driving [6.5702792909006735]
Estimating the 3D position and orientation of objects in the environment with a single RGB camera is a challenging task for low-cost urban autonomous driving and mobile robots.
Most of the existing algorithms are based on the geometric constraints in 2D-3D correspondence, which stems from generic 6D object pose estimation.
We introduce a novel neural network module to fully utilize such application-specific priors in the framework of deep learning.
arXiv Detail & Related papers (2021-02-01T08:18:24Z) - 3D Object Detection and Pose Estimation of Unseen Objects in Color
Images with Local Surface Embeddings [35.769234123059086]
We present an approach for detecting and estimating the 3D poses of objects in images that requires only an untextured CAD model.
Our approach combines Deep Learning and 3D geometry: It relies on an embedding of local 3D geometry to match the CAD models to the input images.
We show that we can use Mask-RCNN in a class-agnostic way to detect the new objects without retraining and thus drastically limit the number of possible correspondences.
arXiv Detail & Related papers (2020-10-08T15:57:06Z) - Canonical 3D Deformer Maps: Unifying parametric and non-parametric
methods for dense weakly-supervised category reconstruction [79.98689027127855]
We propose a new representation of the 3D shape of common object categories that can be learned from a collection of 2D images of independent objects.
Our method builds in a novel way on concepts from parametric deformation models, non-parametric 3D reconstruction, and canonical embeddings.
It achieves state-of-the-art results in dense 3D reconstruction on public in-the-wild datasets of faces, cars, and birds.
arXiv Detail & Related papers (2020-08-28T15:44:05Z) - DOPS: Learning to Detect 3D Objects and Predict their 3D Shapes [54.239416488865565]
We propose a fast single-stage 3D object detection method for LIDAR data.
The core novelty of our method is a fast, single-pass architecture that both detects objects in 3D and estimates their shapes.
We find that our proposed method achieves state-of-the-art results by 5% on object detection in ScanNet scenes, and it gets top results by 3.4% in the Open dataset.
arXiv Detail & Related papers (2020-04-02T17:48:50Z) - Learning 2D-3D Correspondences To Solve The Blind Perspective-n-Point
Problem [98.92148855291363]
This paper proposes a deep CNN model which simultaneously solves for both 6-DoF absolute camera pose 2D--3D correspondences.
Tests on both real and simulated data have shown that our method substantially outperforms existing approaches.
arXiv Detail & Related papers (2020-03-15T04:17:30Z) - L6DNet: Light 6 DoF Network for Robust and Precise Object Pose
Estimation with Small Datasets [0.0]
We propose a novel approach to perform 6 DoF object pose estimation from a single RGB-D image.
We adopt a hybrid pipeline in two stages: data-driven and geometric.
Our approach is more robust and accurate than state-of-the-art methods.
arXiv Detail & Related papers (2020-02-03T17:41:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.