論文の概要: Spatiotemporal Fusion in Remote Sensing
- arxiv url: http://arxiv.org/abs/2107.02701v1
- Date: Tue, 6 Jul 2021 16:04:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-07 13:44:56.296605
- Title: Spatiotemporal Fusion in Remote Sensing
- Title(参考訳): リモートセンシングにおける時空間融合
- Authors: Hessah Albanwan, Rongjun Qin
- Abstract要約: データ品質はリモートセンシングアプリケーションを強化する鍵です。
テラバイトのリモートセンシングイメージを毎日取得することができる。
データ融合は、情報抽出、分析、品質改善のために非同期に取得された様々なソースのデータを統合する。
- 参考スコア(独自算出の注目度): 1.2691047660244335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Remote sensing images and techniques are powerful tools to investigate earth
surface. Data quality is the key to enhance remote sensing applications and
obtaining a clear and noise-free set of data is very difficult in most
situations due to the varying acquisition (e.g., atmosphere and season),
sensor, and platform (e.g., satellite angles and sensor characteristics)
conditions. With the increasing development of satellites, nowadays Terabytes
of remote sensing images can be acquired every day. Therefore, information and
data fusion can be particularly important in the remote sensing community. The
fusion integrates data from various sources acquired asynchronously for
information extraction, analysis, and quality improvement. In this chapter, we
aim to discuss the theory of spatiotemporal fusion by investigating previous
works, in addition to describing the basic concepts and some of its
applications by summarizing our prior and ongoing works.
- Abstract(参考訳): リモートセンシング画像と技術は、地球表面を調査する強力なツールである。
データ品質は、リモートセンシングアプリケーションを強化し、クリアでノイズのないデータセットを得るための鍵であり、多くの状況において、取得条件(大気と季節)、センサ、プラットフォーム(衛星の角度やセンサー特性など)によって、非常に困難である。
衛星の開発が進み、今日ではテラバイトのリモートセンシング画像が毎日取得されている。
したがって、リモートセンシングコミュニティでは情報とデータ融合が特に重要である。
融合は、情報抽出、分析、品質改善のために非同期に取得された様々なソースのデータを統合する。
本章では,先行研究と現在進行中の著作を要約し,基本概念と応用のいくつかを説明することに加えて,先行研究を検証し,時空間融合の理論について議論する。
関連論文リスト
- SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
我々は,地球観測における注釈付きデータの不足に対処するために,生成的画像拡散の可能性を探る。
我々の知る限りでは、衛星セグメンテーションのための画像と対応するマスクの両方を最初に生成する。
論文 参考訳(メタデータ) (2024-03-25T10:30:22Z) - BenchCloudVision: A Benchmark Analysis of Deep Learning Approaches for
Cloud Detection and Segmentation in Remote Sensing Imagery [0.0]
本稿では,雲の識別に応用した7つの最先端セマンティックセマンティックセマンティクスと検出アルゴリズムについて検討する。
モデルの適応性を高めるために、トレーニング中に使用される画像の種類とスペクトル帯域の量を含む重要な要素を解析する。
研究は、少数のスペクトルバンドだけでクラウドセグメンテーションを実行できる機械学習アルゴリズムを作成しようとしている。
論文 参考訳(メタデータ) (2024-02-21T16:32:43Z) - DiffusionSat: A Generative Foundation Model for Satellite Imagery [63.2807119794691]
現在、DiffusionSatは、現在利用可能な大規模な高解像度リモートセンシングデータセットのコレクションに基づいてトレーニングされている、最大の生成基盤モデルである。
提案手法は, リアルタイムなサンプルを作成し, 時間生成, マルチスペクトル入力の超解像, インペイントなどの複数の生成課題を解くのに利用できる。
論文 参考訳(メタデータ) (2023-12-06T16:53:17Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
本稿では, エアロゾル粒子を用いた過酷で非構造的な地下環境からのマルチモーダルデータセットを提案する。
ロボットオペレーティング・システム(ROS)フォーマットのすべてのオンボードセンサーから、同期された生データ計測を含んでいる。
本研究の焦点は、時間的・空間的なデータの多様性を捉えることだけでなく、取得したデータに厳しい条件が及ぼす影響を示すことである。
論文 参考訳(メタデータ) (2023-04-27T20:21:18Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
本稿では,公開されているリモートセンシングデータからなるマルチモーダル・大規模時間データセットを作成するためのアプローチを提案する。
我々は、異なる種類の植生を分離できる畳み込みニューラルネットワーク(CNN)モデルを使用する。
論文 参考訳(メタデータ) (2022-09-28T18:51:59Z) - Learning Online Multi-Sensor Depth Fusion [100.84519175539378]
SenFuNetは、センサ固有のノイズと外れ値統計を学習するディープフュージョンアプローチである。
実世界のCoRBSとScene3Dデータセットで様々なセンサーの組み合わせで実験を行う。
論文 参考訳(メタデータ) (2022-04-07T10:45:32Z) - Radar Voxel Fusion for 3D Object Detection [0.0]
本稿では,3次元物体検出のための低レベルセンサ融合ネットワークを開発する。
レーダーセンサーの融合は、雨や夜景のような裂け目状態において特に有益である。
論文 参考訳(メタデータ) (2021-06-26T20:34:12Z) - A review of machine learning in processing remote sensing data for
mineral exploration [0.41998444721319217]
本稿では,最近確立したリモートセンシングデータ処理のための機械学習手法の実装と適応について概説する。
異なる鉱床の探査への応用について研究している。
論文 参考訳(メタデータ) (2021-03-13T10:36:25Z) - Machine Learning Information Fusion in Earth Observation: A
Comprehensive Review of Methods, Applications and Data Sources [0.0]
本稿では,地球観測における問題に対する機械学習(ML)技術に基づく最も重要な情報融合アルゴリズムについて概説する。
データ駆動アプローチ、特にML技術は、このデータルージュから重要な情報を抽出する自然な選択である。
論文 参考訳(メタデータ) (2020-12-07T13:35:08Z) - Learning Selective Sensor Fusion for States Estimation [47.76590539558037]
本稿では,エンド・ツー・エンドのセンサ・フュージョン・モジュールであるSelectFusionを提案する。
予測中、ネットワークは異なるセンサーモードから潜伏する特徴の信頼性を評価することができる。
我々は、公開データセットと漸進的に劣化したデータセットの両方において、すべての融合戦略を広範囲に評価する。
論文 参考訳(メタデータ) (2019-12-30T20:25:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。