Immunization of Pruning Attack in DNN Watermarking Using Constant Weight
Code
- URL: http://arxiv.org/abs/2107.02961v1
- Date: Wed, 7 Jul 2021 00:50:27 GMT
- Title: Immunization of Pruning Attack in DNN Watermarking Using Constant Weight
Code
- Authors: Minoru Kuribayashi, Tatsuya Yasui, Asad Malik, Nobuo Funabiki
- Abstract summary: A novel encoding approach by using constant weight codes to immunize the effects of pruning attacks is presented.
To the best of our knowledge, this is the first study that introduces an encoding technique for DNN watermarking to make it robust against pruning attacks.
- Score: 9.577509224534323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To ensure protection of the intellectual property rights of DNN models,
watermarking techniques have been investigated to insert side-information into
the models without seriously degrading the performance of original task. One of
the threats for the DNN watermarking is the pruning attack such that less
important neurons in the model are pruned to make it faster and more compact as
well as to remove the watermark. In this study, we investigate a channel coding
approach to resist the pruning attack. As the channel model is completely
different from conventional models like digital images, it has been an open
problem what kind of encoding method is suitable for DNN watermarking. A novel
encoding approach by using constant weight codes to immunize the effects of
pruning attacks is presented. To the best of our knowledge, this is the first
study that introduces an encoding technique for DNN watermarking to make it
robust against pruning attacks.
Related papers
- FreeMark: A Non-Invasive White-Box Watermarking for Deep Neural Networks [5.937758152593733]
FreeMark is a novel framework for watermarking deep neural networks (DNNs)
Unlike traditional watermarking methods, FreeMark innovatively generates secret keys from a pre-generated watermark vector and the host model using gradient descent.
Experiments demonstrate that FreeMark effectively resists various watermark removal attacks while maintaining high watermark capacity.
arXiv Detail & Related papers (2024-09-16T05:05:03Z) - DeepEclipse: How to Break White-Box DNN-Watermarking Schemes [60.472676088146436]
We present obfuscation techniques that significantly differ from the existing white-box watermarking removal schemes.
DeepEclipse can evade watermark detection without prior knowledge of the underlying watermarking scheme.
Our evaluation reveals that DeepEclipse excels in breaking multiple white-box watermarking schemes.
arXiv Detail & Related papers (2024-03-06T10:24:47Z) - Towards Robust Model Watermark via Reducing Parametric Vulnerability [57.66709830576457]
backdoor-based ownership verification becomes popular recently, in which the model owner can watermark the model.
We propose a mini-max formulation to find these watermark-removed models and recover their watermark behavior.
Our method improves the robustness of the model watermarking against parametric changes and numerous watermark-removal attacks.
arXiv Detail & Related papers (2023-09-09T12:46:08Z) - Safe and Robust Watermark Injection with a Single OoD Image [90.71804273115585]
Training a high-performance deep neural network requires large amounts of data and computational resources.
We propose a safe and robust backdoor-based watermark injection technique.
We induce random perturbation of model parameters during watermark injection to defend against common watermark removal attacks.
arXiv Detail & Related papers (2023-09-04T19:58:35Z) - Rethinking White-Box Watermarks on Deep Learning Models under Neural
Structural Obfuscation [24.07604618918671]
Copyright protection for deep neural networks (DNNs) is an urgent need for AI corporations.
White-box watermarking is believed to be accurate, credible and secure against most known watermark removal attacks.
We present the first systematic study on how the mainstream white-box watermarks are commonly vulnerable to neural structural obfuscation with textitdummy neurons.
arXiv Detail & Related papers (2023-03-17T02:21:41Z) - On Function-Coupled Watermarks for Deep Neural Networks [15.478746926391146]
We propose a novel DNN watermarking solution that can effectively defend against watermark removal attacks.
Our key insight is to enhance the coupling of the watermark and model functionalities.
Results show a 100% watermark authentication success rate under aggressive watermark removal attacks.
arXiv Detail & Related papers (2023-02-08T05:55:16Z) - Certified Neural Network Watermarks with Randomized Smoothing [64.86178395240469]
We propose a certifiable watermarking method for deep learning models.
We show that our watermark is guaranteed to be unremovable unless the model parameters are changed by more than a certain l2 threshold.
Our watermark is also empirically more robust compared to previous watermarking methods.
arXiv Detail & Related papers (2022-07-16T16:06:59Z) - Exploring Structure Consistency for Deep Model Watermarking [122.38456787761497]
The intellectual property (IP) of Deep neural networks (DNNs) can be easily stolen'' by surrogate model attack.
We propose a new watermarking methodology, namely structure consistency'', based on which a new deep structure-aligned model watermarking algorithm is designed.
arXiv Detail & Related papers (2021-08-05T04:27:15Z) - Piracy-Resistant DNN Watermarking by Block-Wise Image Transformation
with Secret Key [15.483078145498085]
The proposed method embeds a watermark pattern in a model by using learnable transformed images.
It is piracy-resistant, so the original watermark cannot be overwritten by a pirated watermark.
The results show that it was resilient against fine-tuning and pruning attacks while maintaining a high watermark-detection accuracy.
arXiv Detail & Related papers (2021-04-09T08:21:53Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
We propose a novel watermark removal attack from a different perspective.
We design a simple yet powerful transformation algorithm by combining imperceptible pattern embedding and spatial-level transformations.
Our attack can bypass state-of-the-art watermarking solutions with very high success rates.
arXiv Detail & Related papers (2020-09-18T09:14:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.