FreeMark: A Non-Invasive White-Box Watermarking for Deep Neural Networks
- URL: http://arxiv.org/abs/2409.09996v1
- Date: Mon, 16 Sep 2024 05:05:03 GMT
- Title: FreeMark: A Non-Invasive White-Box Watermarking for Deep Neural Networks
- Authors: Yuzhang Chen, Jiangnan Zhu, Yujie Gu, Minoru Kuribayashi, Kouichi Sakurai,
- Abstract summary: FreeMark is a novel framework for watermarking deep neural networks (DNNs)
Unlike traditional watermarking methods, FreeMark innovatively generates secret keys from a pre-generated watermark vector and the host model using gradient descent.
Experiments demonstrate that FreeMark effectively resists various watermark removal attacks while maintaining high watermark capacity.
- Score: 5.937758152593733
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks (DNNs) have achieved significant success in real-world applications. However, safeguarding their intellectual property (IP) remains extremely challenging. Existing DNN watermarking for IP protection often require modifying DNN models, which reduces model performance and limits their practicality. This paper introduces FreeMark, a novel DNN watermarking framework that leverages cryptographic principles without altering the original host DNN model, thereby avoiding any reduction in model performance. Unlike traditional DNN watermarking methods, FreeMark innovatively generates secret keys from a pre-generated watermark vector and the host model using gradient descent. These secret keys, used to extract watermark from the model's activation values, are securely stored with a trusted third party, enabling reliable watermark extraction from suspect models. Extensive experiments demonstrate that FreeMark effectively resists various watermark removal attacks while maintaining high watermark capacity.
Related papers
- DeepEclipse: How to Break White-Box DNN-Watermarking Schemes [60.472676088146436]
We present obfuscation techniques that significantly differ from the existing white-box watermarking removal schemes.
DeepEclipse can evade watermark detection without prior knowledge of the underlying watermarking scheme.
Our evaluation reveals that DeepEclipse excels in breaking multiple white-box watermarking schemes.
arXiv Detail & Related papers (2024-03-06T10:24:47Z) - ClearMark: Intuitive and Robust Model Watermarking via Transposed Model
Training [50.77001916246691]
This paper introduces ClearMark, the first DNN watermarking method designed for intuitive human assessment.
ClearMark embeds visible watermarks, enabling human decision-making without rigid value thresholds.
It shows an 8,544-bit watermark capacity comparable to the strongest existing work.
arXiv Detail & Related papers (2023-10-25T08:16:55Z) - Towards Robust Model Watermark via Reducing Parametric Vulnerability [57.66709830576457]
backdoor-based ownership verification becomes popular recently, in which the model owner can watermark the model.
We propose a mini-max formulation to find these watermark-removed models and recover their watermark behavior.
Our method improves the robustness of the model watermarking against parametric changes and numerous watermark-removal attacks.
arXiv Detail & Related papers (2023-09-09T12:46:08Z) - Safe and Robust Watermark Injection with a Single OoD Image [90.71804273115585]
Training a high-performance deep neural network requires large amounts of data and computational resources.
We propose a safe and robust backdoor-based watermark injection technique.
We induce random perturbation of model parameters during watermark injection to defend against common watermark removal attacks.
arXiv Detail & Related papers (2023-09-04T19:58:35Z) - Rethinking White-Box Watermarks on Deep Learning Models under Neural
Structural Obfuscation [24.07604618918671]
Copyright protection for deep neural networks (DNNs) is an urgent need for AI corporations.
White-box watermarking is believed to be accurate, credible and secure against most known watermark removal attacks.
We present the first systematic study on how the mainstream white-box watermarks are commonly vulnerable to neural structural obfuscation with textitdummy neurons.
arXiv Detail & Related papers (2023-03-17T02:21:41Z) - On Function-Coupled Watermarks for Deep Neural Networks [15.478746926391146]
We propose a novel DNN watermarking solution that can effectively defend against watermark removal attacks.
Our key insight is to enhance the coupling of the watermark and model functionalities.
Results show a 100% watermark authentication success rate under aggressive watermark removal attacks.
arXiv Detail & Related papers (2023-02-08T05:55:16Z) - Exploring Structure Consistency for Deep Model Watermarking [122.38456787761497]
The intellectual property (IP) of Deep neural networks (DNNs) can be easily stolen'' by surrogate model attack.
We propose a new watermarking methodology, namely structure consistency'', based on which a new deep structure-aligned model watermarking algorithm is designed.
arXiv Detail & Related papers (2021-08-05T04:27:15Z) - Immunization of Pruning Attack in DNN Watermarking Using Constant Weight
Code [9.577509224534323]
A novel encoding approach by using constant weight codes to immunize the effects of pruning attacks is presented.
To the best of our knowledge, this is the first study that introduces an encoding technique for DNN watermarking to make it robust against pruning attacks.
arXiv Detail & Related papers (2021-07-07T00:50:27Z) - Robust Black-box Watermarking for Deep NeuralNetwork using Inverse
Document Frequency [1.2502377311068757]
We propose a framework for watermarking a Deep Neural Networks (DNNs) model designed for a textual domain.
The proposed embedding procedure takes place in the model's training time, making the watermark verification stage straightforward.
The experimental results show that watermarked models have the same accuracy as the original ones.
arXiv Detail & Related papers (2021-03-09T17:56:04Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
We propose a novel watermark removal attack from a different perspective.
We design a simple yet powerful transformation algorithm by combining imperceptible pattern embedding and spatial-level transformations.
Our attack can bypass state-of-the-art watermarking solutions with very high success rates.
arXiv Detail & Related papers (2020-09-18T09:14:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.