論文の概要: Rating and aspect-based opinion graph embeddings for explainable
recommendations
- arxiv url: http://arxiv.org/abs/2107.03385v1
- Date: Wed, 7 Jul 2021 14:07:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-09 22:50:10.355641
- Title: Rating and aspect-based opinion graph embeddings for explainable
recommendations
- Title(参考訳): 説明可能なレコメンデーションのための評価とアスペクトベースの意見グラフ埋め込み
- Authors: Iv\'an Cantador, Andr\'es Carvallo, Fernando Diez
- Abstract要約: 本稿では,テキストレビューで表現された評価情報とアスペクトベースの意見を組み合わせたグラフから抽出した埋め込みを活用することを提案する。
次に、AmazonとYelpが6つのドメインで生成したグラフに対して、最先端のグラフ埋め込み技術を適用し、評価し、ベースラインレコメンデータを上回っます。
- 参考スコア(独自算出の注目度): 69.9674326582747
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The success of neural network embeddings has entailed a renewed interest in
using knowledge graphs for a wide variety of machine learning and information
retrieval tasks. In particular, recent recommendation methods based on graph
embeddings have shown state-of-the-art performance. In general, these methods
encode latent rating patterns and content features. Differently from previous
work, in this paper, we propose to exploit embeddings extracted from graphs
that combine information from ratings and aspect-based opinions expressed in
textual reviews. We then adapt and evaluate state-of-the-art graph embedding
techniques over graphs generated from Amazon and Yelp reviews on six domains,
outperforming baseline recommenders. Additionally, our method has the advantage
of providing explanations that involve the coverage of aspect-based opinions
given by users about recommended items.
- Abstract(参考訳): ニューラルネットワークの埋め込みの成功は、さまざまな機械学習や情報検索タスクに知識グラフを使うことに対する関心を新たに高めた。
特に、グラフ埋め込みに基づく最近の推奨手法は最先端のパフォーマンスを示している。
一般に、これらの手法は潜在格付けパターンとコンテンツの特徴をエンコードする。
本稿では,従来の研究と異なり,テキストレビューで表現された評価とアスペクトに基づく意見情報を組み合わせたグラフから抽出した埋め込みを活用することを提案する。
次に、AmazonとYelpが6つのドメインで生成したグラフに対して、最先端のグラフ埋め込み技術を適用し、評価し、ベースラインレコメンデータを上回っます。
また,提案手法は,ユーザから推奨項目に関する意見を対象とする説明を提供するという利点がある。
関連論文リスト
- Review of Explainable Graph-Based Recommender Systems [2.1711205684359247]
本稿では,説明可能なグラフベースレコメンデータシステムの最先端のアプローチについて論じる。
それは、学習方法、説明方法、説明型という3つの側面に基づいて分類する。
論文 参考訳(メタデータ) (2024-07-31T21:30:36Z) - Evaluating graph-based explanations for AI-based recommender systems [1.2499537119440245]
本稿では,AIによるレコメンデーションに対するユーザの認識を改善するために,グラフに基づく説明の有効性について検討する。
ユーザがグラフベースの説明を,機能の重要性を含む設計よりも有用であると認識していることが分かりました。
論文 参考訳(メタデータ) (2024-07-17T07:28:49Z) - Unbiased Graph Embedding with Biased Graph Observations [52.82841737832561]
基礎となるバイアスのないグラフから学習することで、バイアスのない表現を得るための、原則化された新しい方法を提案する。
この新たな視点に基づいて、そのような基礎となるグラフを明らかにするための2つの補完的手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T18:44:37Z) - Recommender systems based on graph embedding techniques: A comprehensive
review [9.871096870138043]
本稿では,二部グラフ,一般グラフ,知識グラフの埋め込み手法からのグラフ埋め込みに基づく推薦を体系的に振り返る。
いくつかの代表的なグラフ埋め込みベースのレコメンデーションモデルと、最もよく使われている従来のレコメンデーションモデルを比較すると、従来のモデルは、暗黙のユーザ-イテム相互作用を予測するためにグラフ埋め込みベースのレコメンデーションモデルよりも総合的に優れていることが示される。
論文 参考訳(メタデータ) (2021-09-20T14:42:39Z) - Graphing else matters: exploiting aspect opinions and ratings in
explainable graph-based recommendations [66.83527496838937]
本稿では,テキストレビューで表現された評価情報とアスペクトベースの意見を組み合わせたグラフから抽出した埋め込みを活用することを提案する。
次に、AmazonとYelpの6つのドメインのレビューから生成されたグラフに対して、最先端のグラフ埋め込み技術を適用して評価する。
提案手法は,推奨項目について利用者が提示したアスペクトベースの意見を活用した説明を提供することの利点がある。
論文 参考訳(メタデータ) (2021-07-07T13:57:28Z) - Graph Learning based Recommender Systems: A Review [111.43249652335555]
グラフ学習ベースのレコメンダーシステム(GLRS)は、高度なグラフ学習アプローチを使用して、ユーザーの好みと意図、および推奨項目の特性をモデル化します。
本稿では,グラフに基づく表現から重要な知識を抽出し,レコメンデーションの正確性,信頼性,説明性を向上する方法について論じることにより,GLRSの体系的なレビューを行う。
論文 参考訳(メタデータ) (2021-05-13T14:50:45Z) - Reinforcement Learning with Feedback Graphs [69.1524391595912]
エージェントがステップ毎に追加のフィードバックを受けた場合,決定過程におけるエピソード強化学習について検討する。
状態-作用対上のフィードバックグラフを用いてこの設定を定式化し、モデルベースのアルゴリズムが追加のフィードバックを利用してよりサンプル効率のよい学習を行うことを示す。
論文 参考訳(メタデータ) (2020-05-07T22:35:37Z) - A Survey on Knowledge Graph-Based Recommender Systems [65.50486149662564]
我々は知識グラフに基づく推薦システムの体系的な調査を行う。
論文は、知識グラフを正確かつ説明可能なレコメンデーションにどのように活用するかに焦点を当てる。
これらの作業で使用されるデータセットを紹介します。
論文 参考訳(メタデータ) (2020-02-28T02:26:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。