論文の概要: Case-based similar image retrieval for weakly annotated large
histopathological images of malignant lymphoma using deep metric learning
- arxiv url: http://arxiv.org/abs/2107.03602v1
- Date: Thu, 8 Jul 2021 04:50:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-09 13:35:51.413167
- Title: Case-based similar image retrieval for weakly annotated large
histopathological images of malignant lymphoma using deep metric learning
- Title(参考訳): deep metric learning を用いた悪性リンパ腫の弱アノテート大きな病理組織像に対するケースベース類似画像検索
- Authors: Noriaki Hashimoto, Yusuke Takagi, Hiroki Masuda, Hiroaki Miyoshi, Kei
Kohno, Miharu Nagaishi, Kensaku Sato, Mai Takeuchi, Takuya Furuta, Keisuke
Kawamoto, Kyohei Yamada, Mayuko Moritsubo, Kanako Inoue, Yasumasa Shimasaki,
Yusuke Ogura, Teppei Imamoto, Tatsuzo Mishina, Koichi Ohshima, Hidekata
Hontani, Ichiro Takeuchi
- Abstract要約: 悪性リンパ腫のヘマトキシリンおよびエオシン(H&E)染色画像に対する症例ベース類似画像検索(SIR)法を提案する。
我々は、注目に基づくマルチインスタンス学習を採用し、ケース間の類似性を計算する際に、腫瘍特異的な領域に焦点を合わせることができる。
悪性リンパ腫249例を対象に, 基礎症例に基づくSIR法よりも高い評価値を示した。
- 参考スコア(独自算出の注目度): 12.010907813584831
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the present study, we propose a novel case-based similar image retrieval
(SIR) method for hematoxylin and eosin (H&E)-stained histopathological images
of malignant lymphoma. When a whole slide image (WSI) is used as an input
query, it is desirable to be able to retrieve similar cases by focusing on
image patches in pathologically important regions such as tumor cells. To
address this problem, we employ attention-based multiple instance learning,
which enables us to focus on tumor-specific regions when the similarity between
cases is computed. Moreover, we employ contrastive distance metric learning to
incorporate immunohistochemical (IHC) staining patterns as useful supervised
information for defining appropriate similarity between heterogeneous malignant
lymphoma cases. In the experiment with 249 malignant lymphoma patients, we
confirmed that the proposed method exhibited higher evaluation measures than
the baseline case-based SIR methods. Furthermore, the subjective evaluation by
pathologists revealed that our similarity measure using IHC staining patterns
is appropriate for representing the similarity of H&E-stained tissue images for
malignant lymphoma.
- Abstract(参考訳): そこで本研究では,ヘマトキシリンとエオシン(H&E)による悪性リンパ腫の組織像を検索する新しい症例ベース類似画像検索法を提案する。
全身のスライド画像(WSI)を入力クエリとして使用する場合,腫瘍細胞などの病理学的に重要な領域のイメージパッチに着目して,同様の症例を検索できることが望ましい。
この問題に対処するために,注意に基づく複数インスタンス学習を採用し,症例間の類似性を計算する際に腫瘍特異的領域に着目した。
さらに,免疫組織化学的(ihc)染色パターンを,異種悪性リンパ腫の適切な類似性を定義するための教師付き情報として組み込むために,対比的距離測定を行った。
249例の悪性リンパ腫に対する実験において,本手法はsir法よりも高い評価基準を示した。
また, 病理医による主観的評価により, 悪性リンパ腫に対するh&e染色組織像の類似性を表すために, ihc染色パターンを用いた類似度測定が適切であった。
関連論文リスト
- Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
磁気共鳴イメージング(MRI)のクロスモーダル増強と、同じ組織サンプルに基づく顕微鏡イメージングが期待できる。
コンディショナル・ジェネレーティブ・逆境ネットワーク (cGAN) アーキテクチャを用いて, コーパス・カロサムのMRI画像から顕微鏡組織像を生成する方法を検討した。
論文 参考訳(メタデータ) (2023-10-16T13:58:53Z) - CAMIL: Context-Aware Multiple Instance Learning for Cancer Detection and Subtyping in Whole Slide Images [3.1118773046912382]
がん診断のためのコンテキスト認識型マルチインスタンス学習(CAMIL)アーキテクチャを提案する。
CAMILは隣接する制約のある注意を取り入れて、WSI(Whole Slide Images)内のタイル間の依存関係を考慮し、コンテキスト制約を事前の知識として統合する。
CAMILは非小細胞肺癌(TCGA-NSCLC)の亜型であり,リンパ節転移は検出され,AUCは97.5%,95.9%,88.1%であった。
論文 参考訳(メタデータ) (2023-05-09T10:06:37Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
乳がんのヘマトキシリンおよびエオシン染色像におけるいくつかの分類課題に対する自己監督アルゴリズムを提案する。
本手法は,いくつかの乳がんデータセット上での最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-11-14T18:16:36Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
本稿では,病理組織像間でテクスチャを特徴付ける手法を提案する。
2つのHIデータセットに有望な精度で、そのような画像の固有特性を定量化することが可能である。
論文 参考訳(メタデータ) (2022-02-27T02:19:09Z) - Symmetry-Enhanced Attention Network for Acute Ischemic Infarct
Segmentation with Non-Contrast CT Images [50.55978219682419]
急性虚血性梗塞セグメンテーションのための対称性増強型注意ネットワーク(SEAN)を提案する。
提案するネットワークは、入力されたCT画像を、脳組織が左右対称な標準空間に自動的に変換する。
提案したSEANは、ダイス係数と梗塞局所化の両方の観点から、対称性に基づく最先端の手法より優れている。
論文 参考訳(メタデータ) (2021-10-11T07:13:26Z) - Magnification-independent Histopathological Image Classification with
Similarity-based Multi-scale Embeddings [12.398787062519034]
本稿では,類似性に基づく画像分類のためのマルチスケール埋め込みを学習する手法を提案する。
特に、対損失と三重項損失を利用して、画像対や画像三重項から類似性に基づく埋め込みを学習する。
SMSEはBreakHisベンチマークで最高のパフォーマンスを達成しており、従来の方法に比べて5%から18%改善されている。
論文 参考訳(メタデータ) (2021-07-02T13:18:45Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
臨床皮膚画像から機械学習に基づく悪性度予測と病変の同定を検討する。
まず, サブタイプや悪性度に関わらず画像に存在するすべての病変を同定し, その悪性度を推定し, 凝集により, 画像レベルの悪性度も生成する。
論文 参考訳(メタデータ) (2021-04-02T20:52:05Z) - Lung Nodule Classification Using Biomarkers, Volumetric Radiomics and 3D
CNNs [0.0699049312989311]
放射線医のアノテーションとCTスキャンの画像分類を併用して肺悪性度を推定するハイブリッドアルゴリズムを提案する。
提案アルゴリズムは3次元畳み込みニューラルネットワーク(CNN)とランダムフォレストを用いて,CT画像とバイオマーカーのアノテーションと放射能の特徴を組み合わせる。
画像バイオマーカーのみを用いたモデルは,バイオマーカーをボリュームラジオミクス,3D CNN,セミ教師付き学習と組み合わせたモデルよりも精度が高いことを示す。
論文 参考訳(メタデータ) (2020-10-19T18:57:26Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
ハイパースペクトル画像とディープラーニングを用いたin-vivo腫瘍型分類の可能性を示した。
我々の最良のモデルは76.3%のAUCを達成し、従来の学習手法とディープラーニング手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-02T12:00:53Z) - Multi-scale Domain-adversarial Multiple-instance CNN for Cancer Subtype
Classification with Unannotated Histopathological Images [16.02231907106384]
我々は,マルチインスタンス,ドメイン逆数,マルチスケール学習フレームワークを効果的に組み合わせ,CNNに基づく癌サブタイプ分類法を開発した。
分類性能は標準のCNNや他の従来の方法よりも有意に優れており, 精度は標準の病理医と比較して良好であった。
論文 参考訳(メタデータ) (2020-01-06T14:09:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。