論文の概要: Encoding Domain Information with Sparse Priors for Inferring Explainable
Latent Variables
- arxiv url: http://arxiv.org/abs/2107.03730v1
- Date: Thu, 8 Jul 2021 10:19:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-09 18:33:09.869722
- Title: Encoding Domain Information with Sparse Priors for Inferring Explainable
Latent Variables
- Title(参考訳): 説明可能な潜在変数を推論するためのスパースプリデントによるドメイン情報の符号化
- Authors: Arber Qoku and Florian Buettner
- Abstract要約: 説明可能な因子の推論を促進するために,スパース先行の因子潜在変数モデルであるspex-LVMを提案する。
spex-LVMは、既存の生物医療経路の知識を利用して、潜在因子にアノテート属性を自動的に割り当てる。
シミュレーションおよび実シングルセルRNA-seqデータセットの評価は、本モデルが本質的に説明可能な方法で関連構造を頑健に識別することを示す。
- 参考スコア(独自算出の注目度): 2.8935588665357077
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Latent variable models are powerful statistical tools that can uncover
relevant variation between patients or cells, by inferring unobserved hidden
states from observable high-dimensional data. A major shortcoming of current
methods, however, is their inability to learn sparse and interpretable hidden
states. Additionally, in settings where partial knowledge on the latent
structure of the data is readily available, a statistically sound integration
of prior information into current methods is challenging. To address these
issues, we propose spex-LVM, a factorial latent variable model with sparse
priors to encourage the inference of explainable factors driven by
domain-relevant information. spex-LVM utilizes existing knowledge of curated
biomedical pathways to automatically assign annotated attributes to latent
factors, yielding interpretable results tailored to the corresponding domain of
interest. Evaluations on simulated and real single-cell RNA-seq datasets
demonstrate that our model robustly identifies relevant structure in an
inherently explainable manner, distinguishes technical noise from sources of
biomedical variation, and provides dataset-specific adaptations of existing
pathway annotations. Implementation is available at
https://github.com/MLO-lab/spexlvm.
- Abstract(参考訳): 潜在変数モデルは、観測可能な高次元データから観測不能な隠蔽状態を推定することにより、患者または細胞間の関連する変動を明らかにする強力な統計ツールである。
しかし、現在の方法の大きな欠点は、スパースと解釈可能な隠れ状態の学習ができないことである。
また、データの潜在構造に関する部分的な知識が容易に利用できる環境では、従来の情報を現在の方法に統計的に健全に統合することは困難である。
これらの問題に対処するために、ドメイン関連情報によって引き起こされる説明可能な要因の推論を促進するために、スパース事前を持つ因子潜在変数モデルspex-LVMを提案する。
spex-LVMは、既存の生物医療経路の知識を利用して、潜在因子に注釈属性を自動的に割り当て、対応する関心領域に合わせて解釈可能な結果を得る。
シミュレーションおよび実シングルセルRNA-seqデータセットの評価は、本モデルが本質的に説明可能な方法で関連構造を強く識別し、バイオメディカルな変化源から技術的ノイズを識別し、既存の経路アノテーションのデータセット固有の適応を提供することを示す。
実装はhttps://github.com/mlo-lab/spexlvmで利用可能である。
関連論文リスト
- Inpainting Pathology in Lumbar Spine MRI with Latent Diffusion [4.410798232767917]
病理組織学的特徴をMRIで健全な解剖学的特徴に塗布する効率的な方法を提案する。
腰椎椎間板ヘルニアと中心管狭窄に対し,T2 MRIにて椎間板ヘルニアを挿入する能力について検討した。
論文 参考訳(メタデータ) (2024-06-04T16:47:47Z) - FORESEE: Multimodal and Multi-view Representation Learning for Robust Prediction of Cancer Survival [3.4686401890974197]
マルチモーダル情報のマイニングにより患者生存を確実に予測する新しいエンドツーエンドフレームワークFOESEEを提案する。
クロスフュージョントランスフォーマーは、細胞レベル、組織レベル、腫瘍の不均一度レベルの特徴を効果的に利用し、予後を相関させる。
ハイブリットアテンションエンコーダ(HAE)は、コンテキストアテンションモジュールを用いて、コンテキスト関係の特徴を取得する。
また、モダリティ内の損失情報を再構成する非対称マスク型3重マスク型オートエンコーダを提案する。
論文 参考訳(メタデータ) (2024-05-13T12:39:08Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - FATE: Feature-Agnostic Transformer-based Encoder for learning
generalized embedding spaces in flow cytometry data [4.550634499956126]
我々は,潜在的な特徴集合の交わりに入力空間を拘束することなく,様々な特徴を持つデータを有効に活用することを目的としている。
特徴量の整合を必要とせずに直接データを処理できる新しいアーキテクチャを提案する。
本モデルの利点は, 急性骨髄性白血病の血流データにおける癌細胞の自動検出である。
論文 参考訳(メタデータ) (2023-11-06T18:06:38Z) - Conditionally Invariant Representation Learning for Disentangling
Cellular Heterogeneity [25.488181126364186]
本稿では,不必要な変数や乱れに条件付き不変な表現を学習するために,ドメインの可変性を活用する新しい手法を提案する。
単細胞ゲノム学におけるデータ統合など,生物の課題に対して本手法を適用した。
具体的には、提案手法は、対象のタスクと無関係なデータバイアスや興味の因果的説明から生物学的信号を解き放つのに役立つ。
論文 参考訳(メタデータ) (2023-07-02T12:52:41Z) - DCID: Deep Canonical Information Decomposition [84.59396326810085]
本稿では,2つの1次元目標変数間で共有される信号の同定について考察する。
そこで本研究では,地中トラスラベルの存在下で使用可能な評価指標であるICMを提案する。
また、共有変数を学習するための単純かつ効果的なアプローチとして、Deep Canonical Information Decomposition (DCID)を提案する。
論文 参考訳(メタデータ) (2023-06-27T16:59:06Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - RevUp: Revise and Update Information Bottleneck for Event Representation [16.54912614895861]
機械学習では、潜在変数は基礎となるデータ構造をキャプチャする上で重要な役割を果たすが、しばしば教師なしである。
本稿では,側知識を用いて個別潜伏変数の学習を指示する半教師付き情報ボトルネックモデルを提案する。
提案手法は,既存のパラメータ注入法を一般化し,言語に基づくイベントモデリングにおけるアプローチの実証的なケーススタディを行う。
論文 参考訳(メタデータ) (2022-05-24T17:54:59Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
本稿では,構造空間上でインスタンス化された同変表現学習における最近の結果と,因果推論における古典的結果の簡易な利用が,いかに効果的に実現されたかを示す。
いくつかの仮定の下で、我々のモデルが複数のニュアンス変数を扱えることを実証し、そうでなければサンプルの大部分を取り除く必要のあるシナリオにおいて、プールされた科学データセットの分析を可能にする。
論文 参考訳(メタデータ) (2022-03-29T04:54:06Z) - Learning Conditional Invariance through Cycle Consistency [60.85059977904014]
本稿では,データセットの変動の有意義な要因と独立な要因を識別する新しい手法を提案する。
提案手法は,対象プロパティと残りの入力情報に対する2つの別個の潜在部分空間を含む。
我々は,より意味のある因子を同定し,よりスペーサーや解釈可能なモデルに導く合成および分子データについて実証する。
論文 参考訳(メタデータ) (2021-11-25T17:33:12Z) - InteL-VAEs: Adding Inductive Biases to Variational Auto-Encoders via
Intermediary Latents [60.785317191131284]
本稿では,潜伏変数の中間集合を用いて,制御可能なバイアスでVAEを学習するための簡易かつ効果的な手法を提案する。
特に、学習した表現に対して、スパーシリティやクラスタリングといった望ましいプロパティを課すことができます。
これにより、InteL-VAEはより優れた生成モデルと表現の両方を学ぶことができる。
論文 参考訳(メタデータ) (2021-06-25T16:34:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。