論文の概要: Augmented Data as an Auxiliary Plug-in Towards Categorization of
Crowdsourced Heritage Data
- arxiv url: http://arxiv.org/abs/2107.03852v1
- Date: Thu, 8 Jul 2021 14:09:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-09 16:26:43.340910
- Title: Augmented Data as an Auxiliary Plug-in Towards Categorization of
Crowdsourced Heritage Data
- Title(参考訳): クラウドソーシング遺産データの分類に向けた補助プラグインとしての拡張データ
- Authors: Shashidhar Veerappa Kudari, Akshaykumar Gunari, Adarsh Jamadandi,
Ramesh Ashok Tabib, Uma Mudenagudi
- Abstract要約: 本稿では,データ拡張を補助プラグインとして導入することで,非効率なクラスタリング性能の問題を緩和する戦略を提案する。
我々は、深層クラスタリングのための新しいモデルとして初期特徴空間を構築するために、拡張データを用いた畳み込みオートエンコーダ(CAE)の変種を訓練する。
- 参考スコア(独自算出の注目度): 2.609784101826762
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a strategy to mitigate the problem of inefficient
clustering performance by introducing data augmentation as an auxiliary
plug-in. Classical clustering techniques such as K-means, Gaussian mixture
model and spectral clustering are central to many data-driven applications.
However, recently unsupervised simultaneous feature learning and clustering
using neural networks also known as Deep Embedded Clustering (DEC) has gained
prominence. Pioneering works on deep feature clustering focus on defining
relevant clustering loss function and choosing the right neural network for
extracting features. A central problem in all these cases is data sparsity
accompanied by high intra-class and low inter-class variance, which
subsequently leads to poor clustering performance and erroneous candidate
assignments. Towards this, we employ data augmentation techniques to improve
the density of the clusters, thus improving the overall performance. We train a
variant of Convolutional Autoencoder (CAE) with augmented data to construct the
initial feature space as a novel model for deep clustering. We demonstrate the
results of proposed strategy on crowdsourced Indian Heritage dataset. Extensive
experiments show consistent improvements over existing works.
- Abstract(参考訳): 本稿では,データ拡張を補助プラグインとして導入することで,非効率クラスタリング性能の問題を緩和する戦略を提案する。
k-平均、ガウス混合モデル、スペクトルクラスタリングといった古典的なクラスタリング技術は多くのデータ駆動アプリケーションの中心である。
しかし、最近、deep embedded clustering(dec)として知られるニューラルネットワークを用いた教師なし機能学習とクラスタリングが注目されている。
Pioneeringは、関連するクラスタリング損失関数を定義し、機能を抽出する適切なニューラルネットワークを選択することに焦点を当てている。
これらすべてのケースにおける中心的な問題は、高いクラス内分散と低いクラス間分散を伴うデータのスパーシティである。
これに向けて,クラスタの密度向上のためにデータ拡張技術を採用し,全体のパフォーマンスを向上させる。
我々は,拡張データを用いた畳み込みオートエンコーダ(cae)の変種を訓練し,その初期特徴空間を深層クラスタリングの新しいモデルとして構築する。
クラウドソーシングされたインド遺産データセットにおける提案戦略の結果を実証する。
大規模な実験は、既存の作業よりも一貫した改善を示している。
関連論文リスト
- Fuzzy K-Means Clustering without Cluster Centroids [79.19713746387337]
ファジィK平均クラスタリングは教師なしデータ解析において重要な計算手法である。
本稿では,クラスタセントロイドへの依存を完全に排除する,ファジィK平均クラスタリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-07T12:25:03Z) - Toward Efficient and Incremental Spectral Clustering via Parametric
Spectral Clustering [2.44755919161855]
スペクトルクラスタリングは、非線形分離可能なデータを効果的にクラスタリングするための一般的な方法である。
本稿では、パラメトリックスペクトルクラスタリング(PSC)と呼ばれる新しい手法を提案する。
PSCは、ビッグデータとリアルタイムシナリオに関連する課題に対処する。
論文 参考訳(メタデータ) (2023-11-14T01:26:20Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
オンラインディープクラスタリング(オンラインディープクラスタリング)とは、機能抽出ネットワークとクラスタリングモデルを組み合わせて、クラスタラベルを処理された各新しいデータポイントまたはバッチに割り当てることである。
オフラインメソッドよりも高速で汎用性が高いが、オンラインクラスタリングは、エンコーダがすべての入力を同じポイントにマッピングし、すべてを単一のクラスタに配置する、崩壊したソリューションに容易に到達することができる。
本稿では,データ拡張を必要としない手法を提案する。
論文 参考訳(メタデータ) (2023-03-29T08:23:26Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
本稿では,Ensembles (DeepCluE) を用いたDeep Clusteringを提案する。
ディープニューラルネットワークにおける複数のレイヤのパワーを活用することで、ディープクラスタリングとアンサンブルクラスタリングのギャップを埋める。
6つの画像データセットの実験結果から、最先端のディープクラスタリングアプローチに対するDeepCluEの利点が確認されている。
論文 参考訳(メタデータ) (2022-06-01T09:51:38Z) - Deep clustering with fusion autoencoder [0.0]
ディープクラスタリング(DC)モデルは、オートエンコーダを利用して、結果としてクラスタリングプロセスを促進する固有の特徴を学ぶ。
本稿では、この問題に対処するための新しいDC法を提案し、特に、生成逆数ネットワークとVAEを融合オートエンコーダ(FAE)と呼ばれる新しいオートエンコーダに結合する。
論文 参考訳(メタデータ) (2022-01-11T07:38:03Z) - Deep Attention-guided Graph Clustering with Dual Self-supervision [49.040136530379094]
デュアル・セルフ・スーパービジョン(DAGC)を用いたディープアテンション誘導グラフクラスタリング法を提案する。
我々は,三重項Kulback-Leibler分散損失を持つソフトな自己スーパービジョン戦略と,擬似的な監督損失を持つハードな自己スーパービジョン戦略からなる二重自己スーパービジョンソリューションを開発する。
提案手法は6つのベンチマークデータセットにおける最先端の手法より一貫して優れている。
論文 参考訳(メタデータ) (2021-11-10T06:53:03Z) - Attention-driven Graph Clustering Network [49.040136530379094]
我々は、注意駆動グラフクラスタリングネットワーク(AGCN)という新しいディープクラスタリング手法を提案する。
AGCNは、ノード属性特徴とトポロジグラフ特徴を動的に融合するために、不均一な融合モジュールを利用する。
AGCNは、教師なしの方法で特徴学習とクラスタ割り当てを共同で行うことができる。
論文 参考訳(メタデータ) (2021-08-12T02:30:38Z) - Very Compact Clusters with Structural Regularization via Similarity and
Connectivity [3.779514860341336]
本稿では,汎用データセットのためのエンドツーエンドのディープクラスタリングアルゴリズムであるVery Compact Clusters (VCC)を提案する。
提案手法は,最先端のクラスタリング手法よりも優れたクラスタリング性能を実現する。
論文 参考訳(メタデータ) (2021-06-09T23:22:03Z) - Deep adaptive fuzzy clustering for evolutionary unsupervised
representation learning [2.8028128734158164]
大規模で複雑な画像のクラスタ割り当ては、パターン認識とコンピュータビジョンにおいて重要かつ困難な作業です。
反復最適化による新しい進化的教師なし学習表現モデルを提案する。
ファジィメンバシップを利用して深層クラスタ割り当ての明確な構造を表現するディープリコンストラクションモデルに対して,共同でファジィクラスタリングを行った。
論文 参考訳(メタデータ) (2021-03-31T13:58:10Z) - Joint Optimization of an Autoencoder for Clustering and Embedding [22.16059261437617]
本稿では,自動エンコーダとクラスタリングを同時に学習する代替手法を提案する。
この単純なニューラルネットワークはクラスタリングモジュールと呼ばれ、ディープオートエンコーダに統合され、ディープクラスタリングモデルとなる。
論文 参考訳(メタデータ) (2020-12-07T14:38:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。