論文の概要: Playing Atari with Hybrid Quantum-Classical Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2107.04114v1
- Date: Thu, 8 Jul 2021 21:42:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-23 01:50:21.414993
- Title: Playing Atari with Hybrid Quantum-Classical Reinforcement Learning
- Title(参考訳): ハイブリッド量子古典強化学習によるatariの演奏
- Authors: Owen Lockwood and Mei Si
- Abstract要約: 我々は、ニューラルネットワークをデータエンコーダとして使用し、Atariゲームをテストベッドとして提案する。
具体的には、ニューラルネットワークは、ゲームから入力されたピクセルを量子変分回路(QVC)の量子データに変換する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Despite the successes of recent works in quantum reinforcement learning,
there are still severe limitations on its applications due to the challenge of
encoding large observation spaces into quantum systems. To address this
challenge, we propose using a neural network as a data encoder, with the Atari
games as our testbed. Specifically, the neural network converts the pixel input
from the games to quantum data for a Quantum Variational Circuit (QVC); this
hybrid model is then used as a function approximator in the Double Deep Q
Networks algorithm. We explore a number of variations of this algorithm and
find that our proposed hybrid models do not achieve meaningful results on two
Atari games - Breakout and Pong. We suspect this is due to the significantly
reduced sizes of the hybrid quantum-classical systems.
- Abstract(参考訳): 最近の量子強化学習の成功にもかかわらず、大きな観測空間を量子系にエンコードすることの難しさから、その応用には厳しい制限が残っている。
そこで本研究では,atariゲームを用いたデータエンコーダとしてニューラルネットワークの利用を提案する。
具体的には、ニューラルネットワークは、ゲームから入力されたピクセルを量子変分回路(QVC)の量子データに変換し、このハイブリッドモデルをDouble Deep Q Networksアルゴリズムの関数近似器として使用する。
このアルゴリズムの多くのバリエーションを調査し,提案するハイブリッドモデルが2つのatariゲーム(breakoutとpong)において有意義な結果が得られないことを見出した。
これは、ハイブリッド量子古典システムのサイズが大幅に小さくなったためと思われる。
関連論文リスト
- Quantum Convolutional Neural Network: A Hybrid Quantum-Classical Approach for Iris Dataset Classification [0.0]
本稿では,4量子ビット量子回路と古典的ニューラルネットワークを組み合わせた,分類タスクのためのハイブリッド量子古典型機械学習モデルを提案する。
このモデルは20エポック以上で訓練され、16エポックに設定されたIrisデータセットテストで100%の精度を達成した。
この研究は、ハイブリッド量子古典モデルの研究の活発化と、実際のデータセットへの適用性に寄与する。
論文 参考訳(メタデータ) (2024-10-21T13:15:12Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Accelerating the training of single-layer binary neural networks using
the HHL quantum algorithm [58.720142291102135]
Harrow-Hassidim-Lloyd (HHL) の量子力学的実装から有用な情報が抽出可能であることを示す。
しかし,本論文では,HHLの量子力学的実装から有用な情報を抽出し,古典的側面における解を見つける際の複雑性を低減することを目的としている。
論文 参考訳(メタデータ) (2022-10-23T11:58:05Z) - Quantum Neuron with Separable-State Encoding [0.0]
現在利用可能な量子プロセッサにおいて、高度な量子ニューロンモデルを大規模にテストすることは、まだ不可能である。
マルチキュービットゲート数を削減した量子パーセプトロン(QP)モデルを提案する。
シミュレーション量子コンピュータにおいて,QPの量子ビットバージョンをいくつか実装することにより,提案モデルの性能を実証する。
論文 参考訳(メタデータ) (2022-02-16T19:26:23Z) - A Hybrid Quantum-Classical Neural Network Architecture for Binary
Classification [0.0]
本稿では,各ニューロンが変動量子回路であるハイブリッド量子古典ニューラルネットワークアーキテクチャを提案する。
シミュレーションハードウェアでは、ハイブリッドニューラルネットワークは、個々の変動量子回路よりも約10%高い分類精度とコストの20%の最小化を実現している。
論文 参考訳(メタデータ) (2022-01-05T21:06:30Z) - Quantum Deformed Neural Networks [83.71196337378022]
我々は,量子コンピュータ上で効率的に動作するように設計された新しい量子ニューラルネットワーク層を開発した。
入力状態の絡み合いに制限された場合、古典的なコンピュータでシミュレートすることができる。
論文 参考訳(メタデータ) (2020-10-21T09:46:12Z) - Supervised Learning Using a Dressed Quantum Network with "Super
Compressed Encoding": Algorithm and Quantum-Hardware-Based Implementation [7.599675376503671]
ノイズのある中間量子(NISQ)デバイス上での変分量子機械学習(QML)アルゴリズムの実装には、必要となるキュービット数とマルチキュービットゲートに関連するノイズに関連する問題がある。
本稿では,これらの問題に対処するための量子ネットワークを用いた変分QMLアルゴリズムを提案する。
他の多くのQMLアルゴリズムとは異なり、我々の量子回路は単一量子ビットゲートのみで構成されており、ノイズに対して堅牢である。
論文 参考訳(メタデータ) (2020-07-20T16:29:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。