Ultrafast Coherence Delocalization in Real Space Simulated by Polaritons
- URL: http://arxiv.org/abs/2107.04162v1
- Date: Fri, 9 Jul 2021 01:03:39 GMT
- Title: Ultrafast Coherence Delocalization in Real Space Simulated by Polaritons
- Authors: Bo Xiang, Zimo Yang, Yi-Zhuang You, Wei Xiong
- Abstract summary: We investigated coherence delocalization on a coupled-cavity molecular polariton platform in time, frequency, and spatial domains.
Unidirectional coherence delocalization was observed in frequency and real spaces.
This work also demonstrated a way of combining photon and molecular modes to simulate coherence dynamics.
- Score: 2.332566368357145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigated coherence delocalization on a coupled-cavity molecular
polariton platform in time, frequency, and spatial domains, enabled by
ultrafast two-dimensional infrared hyperspectral imaging. Unidirectional
coherence delocalization (coherence prepared in one cavity transfer to another
cavity) was observed in frequency and real spaces. This directionality was
enabled by dissipation of delocalized photon from high-energy to low-energy
modes, described by Lindblad dynamics. Further experiments showed that when
coherences were directly prepared across cavities (superpositions between
polaritons from different cavities), only energetically nearby polaritons could
form coherences that survived the long-range environmental fluctuation.
Together with the Lindblad dynamics, this result implied that coherences
delocalized through a one-step mechanism where photons transferred from one
cavity to another, shedding lights to coherence evolution in natural and
artificial quantum systems. This work also demonstrated a way of combining
photon and molecular modes to simulate coherence dynamics.
Related papers
- Collective rovibronic dynamics of a diatomic gas coupled by cavity [0.0]
We consider an ensemble of homonuclear diatomic molecules coupled to the two polarization directions of a Fabry-P'erot cavity.
We identify a coupling mechanism mediated simultaneously by the two perpendicular polarizations, and inducing polaritonic relaxation towards molecular rotations.
Our simulations indicate that the molecular rotational dynamics in gas-phase cavity-coupled systems can serve as a novel probe for non-radiative polaritonic decay towards the dark-states manifold.
arXiv Detail & Related papers (2024-01-19T14:35:35Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Plasmon mediated coherent population oscillations in molecular
aggregates [2.2723634099641004]
coherent coupling of quantum emitters to vacuum fluctuations of the light field offers opportunities for manipulating the optical and transport properties of nanomaterials.
Here, we use ultrafast two-dimensional electronic spectroscopy to probe the quantum dynamics of J-aggregate excitons collectively coupled to the spatially structured plasmonic fields of a gold nanoslit array.
arXiv Detail & Related papers (2023-07-27T08:57:46Z) - Photon generation and entanglement in a double superconducting cavity [105.54048699217668]
We study the dynamical Casimir effect in a double superconducting cavity in a quantum electrodynamics architecture.
We study the creation of photons when the walls oscillate harmonically with a small amplitude.
arXiv Detail & Related papers (2022-07-18T16:43:47Z) - Entangled biphoton enhanced double quantum coherence signal as a probe
for cavity polariton correlations in presence of phonon induced dephasing [0.0]
We propose a biphoton entanglement-enhanced multidimensional spectroscopic technique as a probe for the dissipative polariton dynamics in the ultrafast regime.
The proposed technique is shown to be particularly sensitive to inter-manifold polariton coherence between the two and one-excitation subspaces.
It is demonstrated to be able to monitor the dynamical role of cavity-mediated excitonic correlations, and dephasing in the presence of phonon-induced dissipation.
arXiv Detail & Related papers (2022-05-31T11:25:34Z) - Unveiling the mixed nature of polaritonic transport: From enhanced
diffusion to ballistic motion approaching the speed of light [0.0]
Coupling with light can enhance the diffusion coefficient of molecular excitons by six orders of magnitude.
Our studies reveal intricate behavior which stems from the hybrid nature of polaritons.
arXiv Detail & Related papers (2022-05-13T14:37:31Z) - Connecting steady-states of driven-dissipative photonic lattices with
spontaneous collective emission phenomena [91.3755431537592]
We use intuition to predict the formation of non-trivial photonic steady-states in one and two dimensions.
We show that subradiant emitter configurations are linked to the emergence of steady-state light-localization in the driven-dissipative setting.
These results shed light on the recently reported optically-defined cavities in polaritonic lattices.
arXiv Detail & Related papers (2021-12-27T23:58:42Z) - Photon-mediated interactions near a Dirac photonic crystal slab [68.8204255655161]
We develop a theory of dipole radiation near photonic Dirac points in realistic structures.
We find positions where the nature of the collective interactions change from being coherent to dissipative ones.
Our results significantly improve the knowledge of Dirac light-matter interfaces.
arXiv Detail & Related papers (2021-07-01T14:21:49Z) - Full-mode Characterisation of Correlated Photon Pairs Generated in
Spontaneous Downconversion [0.0]
Spontaneous downconversion is the primary source to generate entangled photon pairs in quantum photonics laboratories.
We study the full-mode correlation, on a Laguerre-Gauss basis, between photon pairs generated in a type-I crystal.
We also explore the effect of a structured pump beam possessing different spatial modes onto bi-photon spatial correlation.
arXiv Detail & Related papers (2021-03-15T20:17:52Z) - Entanglement dynamics in dissipative photonic Mott insulators [62.997667081978825]
In spite of particle losses the quantum entanglement propagation exhibits a ballistic character with propagation speeds related to the differerent quasiparticles that are involved in the dynamics.
Our analysis reveals that photon dissipation has a strikingly asymmetric behavior in the two configurations with a much more dramatic role on the holon entanglement propagation than for the doublon case.
arXiv Detail & Related papers (2020-04-27T15:48:24Z) - Quantum-Clustered Two-Photon Walks [68.8204255655161]
We demonstrate a previously unknown two-photon effect in a discrete-time quantum walk.
Two identical bosons with no mutual interactions can remain clustered together.
The two photons move in the same direction at each step due to a two-photon quantum interference phenomenon.
arXiv Detail & Related papers (2020-03-12T17:02:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.