A First Look at Class Incremental Learning in Deep Learning Mobile
Traffic Classification
- URL: http://arxiv.org/abs/2107.04464v1
- Date: Fri, 9 Jul 2021 14:28:16 GMT
- Title: A First Look at Class Incremental Learning in Deep Learning Mobile
Traffic Classification
- Authors: Giampaolo Bovenzi, Lixuan Yang, Alessandro Finamore, Giuseppe Aceto,
Domenico Ciuonzo, Antonio Pescap\`e, Dario Rossi
- Abstract summary: We explore Incremental Learning (IL) techniques to add new classes to models without a full retraining, hence speeding up model's updates cycle.
We consider iCarl, a state of the art IL method, and MIRAGE-2019, a public dataset with traffic from 40 Android apps.
Despite our analysis reveals their infancy, IL techniques are a promising research area on the roadmap towards automated DL-based traffic analysis systems.
- Score: 68.11005070665364
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent popularity growth of Deep Learning (DL) re-ignited the interest
towards traffic classification, with several studies demonstrating the accuracy
of DL-based classifiers to identify Internet applications' traffic. Even with
the aid of hardware accelerators (GPUs, TPUs), DL model training remains
expensive, and limits the ability to operate frequent model updates necessary
to fit to the ever evolving nature of Internet traffic, and mobile traffic in
particular. To address this pain point, in this work we explore Incremental
Learning (IL) techniques to add new classes to models without a full
retraining, hence speeding up model's updates cycle. We consider iCarl, a state
of the art IL method, and MIRAGE-2019, a public dataset with traffic from 40
Android apps, aiming to understand "if there is a case for incremental learning
in traffic classification". By dissecting iCarl internals, we discuss ways to
improve its design, contributing a revised version, namely iCarl+. Despite our
analysis reveals their infancy, IL techniques are a promising research area on
the roadmap towards automated DL-based traffic analysis systems.
Related papers
- Deep Learning-driven Mobile Traffic Measurement Collection and Analysis [0.43512163406552007]
In this thesis, we harness the powerful hierarchical feature learning abilities of Deep Learning (DL) techniques in both spatial and temporal domains.
We develop solutions for precise city-scale mobile traffic analysis and forecasting.
arXiv Detail & Related papers (2024-10-14T06:53:45Z) - Continual Learning for Adaptable Car-Following in Dynamic Traffic Environments [16.587883982785]
The continual evolution of autonomous driving technology requires car-following models that can adapt to diverse and dynamic traffic environments.
Traditional learning-based models often suffer from performance degradation when encountering unseen traffic patterns due to a lack of continual learning capabilities.
This paper proposes a novel car-following model based on continual learning that addresses this limitation.
arXiv Detail & Related papers (2024-07-17T06:32:52Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.
On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.
On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - The Web Can Be Your Oyster for Improving Large Language Models [98.72358969495835]
Large language models (LLMs) encode a large amount of world knowledge.
We consider augmenting LLMs with the large-scale web using search engine.
We present a web-augmented LLM UNIWEB, which is trained over 16 knowledge-intensive tasks in a unified text-to-text format.
arXiv Detail & Related papers (2023-05-18T14:20:32Z) - DL-Traff: Survey and Benchmark of Deep Learning Models for Urban Traffic
Prediction [7.476566278759198]
By leveraging state-of-the-art deep learning technologies on such data, urban traffic prediction has drawn a lot attention in AI and Intelligent Transportation System community.
According to the specific modeling strategy, the state-of-the-art deep learning models can be divided into three categories: grid-based, graph-based, and time-series models.
arXiv Detail & Related papers (2021-08-20T10:08:26Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
This paper surveys the state-of-the-art open-source AutoML tools, applies them to data collected from streams, and measures how their performance changes over time.
The results show that off-the-shelf AutoML tools can provide satisfactory results but in the presence of concept drift, detection or adaptation techniques have to be applied to maintain the predictive accuracy over time.
arXiv Detail & Related papers (2021-06-14T11:42:46Z) - TrafficStream: A Streaming Traffic Flow Forecasting Framework Based on
Graph Neural Networks and Continual Learning [10.205873494981633]
We propose a Streaming Traffic Flow Forecasting Framework, TrafficStream, based on Graph Neural Networks (GNNs) and Continual Learning (CL)
A JS-divergence-based algorithm is proposed to mine new traffic patterns.
We construct a streaming traffic dataset to verify the efficiency and effectiveness of our model.
arXiv Detail & Related papers (2021-06-11T09:42:37Z) - Deep Learning and Traffic Classification: Lessons learned from a
commercial-grade dataset with hundreds of encrypted and zero-day applications [72.02908263225919]
We share our experience on a commercial-grade DL traffic classification engine.
We identify known applications from encrypted traffic, as well as unknown zero-day applications.
We propose a novel technique, tailored for DL models, that is significantly more accurate and light-weight than the state of the art.
arXiv Detail & Related papers (2021-04-07T15:21:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.