Continual Learning for Adaptable Car-Following in Dynamic Traffic Environments
- URL: http://arxiv.org/abs/2407.14247v1
- Date: Wed, 17 Jul 2024 06:32:52 GMT
- Title: Continual Learning for Adaptable Car-Following in Dynamic Traffic Environments
- Authors: Xianda Chen, PakHin Tiu, Xu Han, Junjie Chen, Yuanfei Wu, Xinhu Zheng, Meixin Zhu,
- Abstract summary: The continual evolution of autonomous driving technology requires car-following models that can adapt to diverse and dynamic traffic environments.
Traditional learning-based models often suffer from performance degradation when encountering unseen traffic patterns due to a lack of continual learning capabilities.
This paper proposes a novel car-following model based on continual learning that addresses this limitation.
- Score: 16.587883982785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The continual evolution of autonomous driving technology requires car-following models that can adapt to diverse and dynamic traffic environments. Traditional learning-based models often suffer from performance degradation when encountering unseen traffic patterns due to a lack of continual learning capabilities. This paper proposes a novel car-following model based on continual learning that addresses this limitation. Our framework incorporates Elastic Weight Consolidation (EWC) and Memory Aware Synapses (MAS) techniques to mitigate catastrophic forgetting and enable the model to learn incrementally from new traffic data streams. We evaluate the performance of the proposed model on the Waymo and Lyft datasets which encompass various traffic scenarios. The results demonstrate that the continual learning techniques significantly outperform the baseline model, achieving 0\% collision rates across all traffic conditions. This research contributes to the advancement of autonomous driving technology by fostering the development of more robust and adaptable car-following models.
Related papers
- GenFollower: Enhancing Car-Following Prediction with Large Language Models [11.847589952558566]
We propose GenFollower, a novel zero-shot prompting approach that leverages large language models (LLMs) to address these challenges.
We reframe car-following behavior as a language modeling problem and integrate heterogeneous inputs into structured prompts for LLMs.
Experiments on Open datasets demonstrate GenFollower's superior performance and ability to provide interpretable insights.
arXiv Detail & Related papers (2024-07-08T04:54:42Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - Guiding Attention in End-to-End Driving Models [49.762868784033785]
Vision-based end-to-end driving models trained by imitation learning can lead to affordable solutions for autonomous driving.
We study how to guide the attention of these models to improve their driving quality by adding a loss term during training.
In contrast to previous work, our method does not require these salient semantic maps to be available during testing time.
arXiv Detail & Related papers (2024-04-30T23:18:51Z) - MOTO: Offline Pre-training to Online Fine-tuning for Model-based Robot
Learning [52.101643259906915]
We study the problem of offline pre-training and online fine-tuning for reinforcement learning from high-dimensional observations.
Existing model-based offline RL methods are not suitable for offline-to-online fine-tuning in high-dimensional domains.
We propose an on-policy model-based method that can efficiently reuse prior data through model-based value expansion and policy regularization.
arXiv Detail & Related papers (2024-01-06T21:04:31Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - Car-Following Models: A Multidisciplinary Review [35.57095196826516]
Car-following models encompass multiple disciplines, including traffic engineering, physics, dynamic system control, cognitive science, machine learning, and reinforcement learning.
It reviews representative algorithms, ranging from theory-based kinematic models, Psycho-Physical Models, and Adaptive cruise control models to data-driven algorithms like Reinforcement Learning (RL) and Imitation Learning (IL)
arXiv Detail & Related papers (2023-04-14T14:06:33Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - Objective-aware Traffic Simulation via Inverse Reinforcement Learning [31.26257563160961]
We formulate traffic simulation as an inverse reinforcement learning problem.
We propose a parameter sharing adversarial inverse reinforcement learning model for dynamics-robust simulation learning.
Our proposed model is able to imitate a vehicle's trajectories in the real world while simultaneously recovering the reward function.
arXiv Detail & Related papers (2021-05-20T07:26:34Z) - A Physics-Informed Deep Learning Paradigm for Car-Following Models [3.093890460224435]
We develop a family of neural network based car-following models informed by physics-based models.
Two types of PIDL-CFM problems are studied, one to predict acceleration only and the other to jointly predict acceleration and discover model parameters.
The results demonstrate the superior performance of neural networks informed by physics over those without.
arXiv Detail & Related papers (2020-12-24T18:04:08Z) - Meta Reinforcement Learning-Based Lane Change Strategy for Autonomous
Vehicles [11.180588185127892]
Supervised learning algorithms can generalize to new environments by training on a large amount of labeled data.
It can be often impractical or cost-prohibitive to obtain sufficient data for each new environment.
We propose a meta reinforcement learning (MRL) method to improve the agent's generalization capabilities.
arXiv Detail & Related papers (2020-08-28T02:57:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.