論文の概要: BSDA-Net: A Boundary Shape and Distance Aware Joint Learning Framework
for Segmenting and Classifying OCTA Images
- arxiv url: http://arxiv.org/abs/2107.04823v1
- Date: Sat, 10 Jul 2021 12:16:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-14 08:20:26.242062
- Title: BSDA-Net: A Boundary Shape and Distance Aware Joint Learning Framework
for Segmenting and Classifying OCTA Images
- Title(参考訳): BSDA-Net:OCTA画像のセグメンテーションと分類のための境界形状と距離を考慮した共同学習フレームワーク
- Authors: Li Lin, Zhonghua Wang, Jiewei Wu, Yijin Huang, Junyan Lyu, Pujin
Cheng, Jiong Wu, Xiaoying Tang
- Abstract要約: 本稿では,OCTA画像からのFAZ分割と診断のための多段階境界形状と距離認識型共同学習フレームワークBSDA-Netを提案する。
提案したBSDA-NetはOCTA-500, OCTAGON, FAZIDデータセットに対して最先端のセグメンテーションと分類結果が得られる。
- 参考スコア(独自算出の注目度): 2.5329716878122404
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optical coherence tomography angiography (OCTA) is a novel non-invasive
imaging technique that allows visualizations of vasculature and foveal
avascular zone (FAZ) across retinal layers. Clinical researches suggest that
the morphology and contour irregularity of FAZ are important biomarkers of
various ocular pathologies. Therefore, precise segmentation of FAZ has great
clinical interest. Also, there is no existing research reporting that FAZ
features can improve the performance of deep diagnostic classification
networks. In this paper, we propose a novel multi-level boundary shape and
distance aware joint learning framework, named BSDA-Net, for FAZ segmentation
and diagnostic classification from OCTA images. Two auxiliary branches, namely
boundary heatmap regression and signed distance map reconstruction branches,
are constructed in addition to the segmentation branch to improve the
segmentation performance, resulting in more accurate FAZ contours and fewer
outliers. Moreover, both low-level and high-level features from the
aforementioned three branches, including shape, size, boundary, and signed
directional distance map of FAZ, are fused hierarchically with features from
the diagnostic classifier. Through extensive experiments, the proposed BSDA-Net
is found to yield state-of-the-art segmentation and classification results on
the OCTA-500, OCTAGON, and FAZID datasets.
- Abstract(参考訳): 光コヒーレンストモグラフィアンギオグラフィー(OCTA)は、新しい非侵襲的イメージング技術であり、網膜層にまたがる血管と胎児の血管ゾーン(FAZ)の可視化を可能にする。
臨床研究は、fazの形態と輪郭の不規則性が様々な眼疾患の重要なバイオマーカーであることを示唆している。
したがって、FAZの正確なセグメンテーションは、非常に興味深い。
また、FAZの特徴が深層診断分類網の性能を向上させるという研究報告はない。
本稿では,OCTA画像からのFAZセグメンテーションと診断のためのマルチレベル境界形状と距離認識型共同学習フレームワークBSDA-Netを提案する。
2つの補助枝、すなわち境界熱マップ回帰と符号付き距離マップ再構成枝がセグメンテーション部に加えて構築され、セグメンテーション性能が向上し、より正確なFAZ輪郭とより少ないアウトリーが生じる。
さらに、上記の3つの枝(形状、大きさ、境界、FAZの符号付き方向距離マップ)の低レベル特徴と高レベル特徴は、診断分類器の特徴と階層的に融合する。
大規模な実験により、提案したBSDA-NetはOCTA-500、OCTAGON、FAZIDデータセットの最先端のセグメンテーションと分類結果が得られることがわかった。
関連論文リスト
- OCTAMamba: A State-Space Model Approach for Precision OCTA Vasculature Segmentation [10.365417594185685]
そこで我々は,OCTAMambaを提案する。OCTAMambaはOCTAMambaアーキテクチャをベースとした新しいU字型ネットワークで,OCTA内の血管を正確に分割する。
OCTAMambaは、局所的な特徴抽出のためのQuad Stream Efficient Mining Embedding Module、マルチスケールDilated Asymmetric Convolution ModuleをキャプチャするMulti-Scale Dilated Convolution Module、ノイズをフィルタリングしターゲット領域をハイライトするFocused Feature Recalibration Moduleを統合している。
本手法は,線形複雑度を維持しつつ,効率的なグローバルモデリングと局所特徴抽出を実現し,低計算医療応用に適している。
論文 参考訳(メタデータ) (2024-09-12T12:47:34Z) - Scribble-Based Interactive Segmentation of Medical Hyperspectral Images [4.675955891956077]
本研究は、医用ハイパースペクトル画像のためのスクリブルベースのインタラクティブセグメンテーションフレームワークを導入する。
提案手法は,特徴抽出のための深層学習と,ユーザが提供するスクリブルから生成された測地距離マップを利用する。
論文 参考訳(メタデータ) (2024-08-05T12:33:07Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - The Whole Pathological Slide Classification via Weakly Supervised
Learning [7.313528558452559]
細胞核疾患と病理タイルの空間的相関の2つの病因を考察した。
本研究では,抽出器訓練中の汚れ分離を利用したデータ拡張手法を提案する。
次に,隣接行列を用いてタイル間の空間的関係を記述する。
これら2つのビューを統合することで,H&E染色組織像を解析するためのマルチインスタンス・フレームワークを設計した。
論文 参考訳(メタデータ) (2023-07-12T16:14:23Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
血管セグメンテーションは、冠動脈狭窄、網膜血管疾患、脳動脈瘤などの多くの医学的応用において重要である。
コントラストに敏感なマルチスケールアフィニティアプローチを用いて,幾何学的手法と画素単位のセグメンテーション特徴を連成的にモデル化する新しいアプローチであるAFNを提案する。
論文 参考訳(メタデータ) (2022-11-12T05:39:17Z) - Superresolution and Segmentation of OCT scans using Multi-Stage
adversarial Guided Attention Training [18.056525121226862]
我々は,OCTスキャンを高分解能セグメンテーションラベルに変換する多段階・多識別型生成逆数ネットワーク(MultiSDGAN)を提案する。
我々は,MultiSDGANアーキテクチャに対して,チャネルと空間的注意の様々な組み合わせを評価し,比較し,より強力な特徴マップを抽出する。
その結果,Dice係数とSSIMでは21.44%,19.45%の相対的な改善が見られた。
論文 参考訳(メタデータ) (2022-06-10T00:26:55Z) - JOINED : Prior Guided Multi-task Learning for Joint Optic Disc/Cup
Segmentation and Fovea Detection [1.2250035750661867]
そこで本研究では, JOINEDという新しい手法を用いて, 複数タスク学習を先導し, OD/OCセグメンテーションと卵胞検出を行った。
提案するJOINEDパイプラインは粗い段と細かい段からなる。
実験の結果,提案したJOINEDは既存の最先端手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-03-01T13:47:48Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。